To see descriptions of all available curriculum by grade level, click here. To download a PDF of all available units, click here.

Sphero SPRK+

Solar SPRK+ Electricity Fundamentals and Photovoltaics

Grades:
6-8
Unit:
Lesson Number:
4
Description:
Students work through a number of solar circuit explorations that culminate in a challenge to charge the Sphero SPRK+ devices with solar panels. In this exploration, students will investigate the requirements of various loads, working toward the voltage and...
+
-
More Details Less Details
Learning Goal(s):
Students will determine how to create various types of circuits in order to power loads with different electric needs.Students will identify the electric needs of a Sphero charger and build a circuit needed to charge this device.
Author:
Deb Frankel
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
1 hour
Sphero SPRK+

Solar SPRK+: Chariot Engineering Design

Grades:
6-8
Unit:
Lesson Number:
5
Description:
Students will work through the engineering design process to build a chariot for their SPRK+ that will carry their solar panels through a maze to a charging station. Students will draft prototypes, test their designs, and make changes to their design based on...
+
-
More Details Less Details
Learning Goal(s):
Students will identify possible design solutions to have a Sphero SPRK+ pull solar panels as a portable power source.Students will work in groups to determine the best possible designs and construct and test these designs with their team.Students will determine the strengths and weaknesses of each design and incorporate these findings into further construction phases.
Author:
Deb Frankel
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
2 hours
Sphero SPRK+

Solar SPRK+: Final Challenge and Presentation

Grades:
6-8
Unit:
Lesson Number:
6
Description:
In this lesson, students will navigate through a maze using their SPRK+ in order to reach the solar charging station. Students will redesign their chariot in order to meet the needs of this new maze in order to carry their solar panels to the charging station...
+
-
More Details Less Details
Learning Goal(s):
Students will combine SPRK+ programming with the construction of a compatible chariot in order to guide their SPRK+ “Mars rover” to carry solar panels to a charging station.Students will present a final project to the class that summarizes their knowledge about the scientific background knowledge tied to this project as well as their design and testing process.
Author:
Deb Frankel
Relevant NGSS PE:
Estimated Activity Length:
8 hours
Solar Charger Diagram

Replacing Fossil Fuels?

Grades:
10-12
Lesson Number:
1
Description:
As students begin to look at the role photovoltaics might play within the transportation energy sector, it is important for them to understand why the phasing-out of fossil fuels is such a daunting task. This lesson is designed to help students comprehend the...
+
-
More Details Less Details
Learning Goal(s):
1. Students will define energy density. 2. Students will compare energy densities among various transportation fuel options. 3. Students will compare costs per unit of energy among various transportation fuel options. 4. Students will compare energy return on energy invested among various transportation fuel options. 5. Students will assess which fuels have the most potential to replace fossil fuels in the transportation sector using a weighted matrix.
Author:
Clayton Hudiburg
Relevant NGSS PE:
Estimated Activity Length:
1 hour
Solar Charger Diagram

Background Research on Alternative Transportation Vehicles

Grades:
10-12
Lesson Number:
2
Description:
Students completing this lesson will already have identified some of the problems inherent in the development of ideas to replace fossil fuels in the transportation sector. Students will now conduct some research to identify some of the pros and cons of...
+
-
More Details Less Details
Learning Goal(s):
1. Students will define BEVs, HEVs, HFCVs, and HICEVs 2. Students will compare the above vehicles and relate the pros and cons of each technology 3. Students will begin to evaluate which type of technology might be best suited for the goal of replacing fossil fuels in the transportation sector 4. Students will begin to brainstorm ideas for how solar energy might be used to enhance these technologies
Pedagogy & Practice:
Author:
Clayton Hudiburg
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
1 hour
Solar Charger Diagram

Can Portable PV Charge Vehicles?

Grades:
10-12
Lesson Number:
3
Description:
In this lesson, students will begin to explore the potential and challenges related to using photovoltaics to supplement the power needed to charge batteries in BEVs. Students will test a variety of wiring options related to series and parallel wiring. Once...
+
-
More Details Less Details
Learning Goal(s):
Students will explore the role of series and parallel wiring as they pertain to voltage and amperage.Students will explore the processes involved with charging batteries and relate these processes to voltage and amperage.Students will test photovoltaic modules to identify voltage and amperage outputs.Students will calculate, using data from field tests, the maximum power that can be produced using photovoltaics within the constraints of a typical passenger vehicle’s surface area.Students will calculate charging times using various PV array power ratings.
Author:
Clayton Hudiburg
Estimated Activity Length:
2 hours
Solar Charger Diagram

Designing a Solar Charger

Grades:
10-12
Lesson Number:
4
Description:
In this lesson, students will further explore the potential and challenges related to using photovoltaics to supplement the power needed to charge batteries in BEVs. Students will be provided with a 12 V lead-acid battery and several 3 V, 1.5 A solar modules...
+
-
More Details Less Details
Learning Goal(s):
1. Students will explore the role of series and parallel wiring as they pertain to voltage and amperage. 2. Students will explore the processes involved with charging batteries and relate these processes to voltage and amperage. 3. Students will test photovoltaic modules to identify voltage and amperage outputs. 4. Students will design a system of wiring 3 V, 1.5 A modules together as a means to charge a 12 V lead-acid battery 5. Students will predict and test the effectiveness of their designed solar charger.
Author:
Clayton Hudiburg
Estimated Activity Length:
4 hours
Solar Charger Diagram

Photovoltaic Solutions "Shark-Tank Style"

Grades:
10-12
Lesson Number:
5
Description:
In this lesson, the students will take their knowledge gained in the previous activities to innovate design solutions that will allow PV technology to plan an increased role in the transportation sector. The challenge given to them is to design a BEV that...
+
-
More Details Less Details
Learning Goal(s):
1. Students will use data and mathematics to design a solution for using PV technology in the transportation sector. 2. Students will create a presentation with visuals and specs outlining their proposed solution. 3. Students will present and attempt to “sell” their products to a panel of judges.
Author:
Clayton Hudiburg
Estimated Activity Length:
5 hours
Solar Updraft Tower

Solar Updraft Towers Unit Overview

Grades:
3-8
Description:
Students will combine research, direct observations, and hands-on investigation to lead them into an engineering design project involving the construction of a solar updraft tower. During this process, students will make references to specific phenomena they...
+
-
More Details Less Details
Learning Goal(s):
Students will understand ten renewable and non-renewable energy sources on the earth.Students will learn the locations of different energy sources on the earth.Students will learn the history of energy sources and how humans have used them.Students will learn about innovations and inventions used to find, recover, store, and release energy for human consumption.Students will understand that hot air risesStudents will understand why hot water and hot air rise and cold air and cold water sink.Students will learn that wind is produced by warm air rising and cold air sinking.Students will learn that the energy of moving hot air can be converted into other forms of energy.Students will understand that energy from the sun can be converted into heat.Students will discuss the effects of the chimney stack phenomenon.Students will understand that wind energy can be converted into other forms of energy.Students will determine different methods to increase the effectiveness of a wind turbine blade by harnessing and converting the mechanical energy of the wind.Students will determine that thermal energy resulting from the sun’s radiation can create an updraft that will power a turbine to spin.                                       Students will identify characteristics of turbine design that improve the success of their device.Students will utilize content from previous phenomena they investigated, such as the chimney stack effect and Norwegian candle toys, to determine how to best harness the energy transformed by their device from the sun.Students will be able to define and explain what a solar updraft tower is.Students will make connections between their previous engineering challenge and a real world solution to the world’s growing energy demands.
Author:
Lisa Morgan
Estimated Activity Length:
10 hours
Sources of Energy

Informative Writing: Where Does Energy Come From?

Grades:
3-8
Lesson Number:
1
Description:
This lesson is a (stand alone or in-unit) guided non-fiction research and writing project, which includes a differentiated choice menu and list of ideas for publishing the completed project. Each student will choose one of ten energy sources to research,...
+
-
More Details Less Details
Learning Goal(s):
Students will understand ten renewable and non-renewable energy sources on the earth.Students will learn the locations of different energy sources on the earth.Students will learn the history of energy sources and how they have been used by humans.Students will learn about innovations and inventions used to find, recover, store and release energy for human consumption.
Pedagogy & Practice:
Author:
Lisa Morgan
Estimated Activity Length:
10 hours