To see descriptions of all available curriculum by grade level, click here. To download a PDF of all available units, click here.

Car Charger Schematic

Designing a Solar Phone Charger

Grades:
7-12
Unit:
Lesson Number:
7
Description:

This is the culminating activity for the unit “Off the Grid.” Students will be given some restricted parameters around which to design a solar powered battery operated phone (or other USB device) charger . They will charge the AA battery packs that have...

+
-
More Details Less Details
Learning Goal(s):
1. Students will be able to design a device that can charge a phone with 4 hours of sun a day. 2. Students will use collected data and be able to support their design – i.e. the data will show that the unit will produce enough energy to charge a phone given it receives 4 hours of sun a day. 3. Students will also be able to calculate efficiency from their power calculations. 4. Students will be able to compare efficiencies of their circuit to others tested in this unit. 5. Students can calculate how much energy 4 hours of sunlight can produce on the solar modules they will use.
Pedagogy & Practice:
Author:
Brett McFarland
Estimated Activity Length:
5 hours
Sun in Space

Our Place in Space: Cosmic Rays

Grades:
3-5
Lesson Number:
1
Description:

NOTE: SUN PHOTOMETER SUMULATOR AT CAS.HAMPTONU.EDU SEEMS TO BE NO LONGER AVAILABLE.

Using a map of school buildings, students will pick four areas to monitor over the year using wireless weather stations and the Solar Power Meter. In a following...

+
-
More Details Less Details
Learning Goal(s):
Students will learn how the sun affects their school by measuring the temperature at different locations around the building in the fall, winter, and spring. They will learn how to measure solar energy and look for trends in temperature and solar power over the year. These trends will then be used to investigate how energy reaches Earth from the Sun.
Author:
Jamie Repasky
Estimated Activity Length:
3 hours
Sun in Space

Our Place in Space: Cosmic Ray Detector

Grades:
3-5
Lesson Number:
2
Description:

The students will be introduced to solar radiation with an activity centered on using a cloud chamber to visualize cosmic rays.

+
-
More Details Less Details
Learning Goal(s):
• Students will discuss how energy from the sun is transmitted in a variety of forms that perform different amounts of work. • Students will identify multiple pieces of evidence that demonstrate energy being transmitted from the sun.
Author:
Jamie Repasky
Relevant NGSS PE:
Estimated Activity Length:
1 hour
Sun in Space

Our Place in Space: Tracking the Earth's Path Around the Sun

Grades:
1-3
Lesson Number:
3
Description:

During sessions in October, January, and April we will discuss observations about the weather during that season (temperature, length of day, precipitation) and explore how this relates to the Earth’s movement around the Sun. The lesson series will start...

+
-
More Details Less Details
Learning Goal(s):
Students will be able describe how the Earth orbits the Sun and how the tilt of the planet creates the seasons by recording the ‘Sun’s path’ in our sky in the fall, winter, and spring.
Author:
Jamie Repasky
Estimated Activity Length:
6 hours
Solar Circuit

How the Amount of Light Affects a Solar Cell

Grades:
6-8
Unit:
Lesson Number:
1
Description:

Students will cover portions of a solar cell and measure the output with a multimeter. They will compare and contrast the outputs of different percentages shaded and different configurations using the same percentage shaded.

+
-
More Details Less Details
Solar Circuit

How Light Intensity Affects Solar Cell Output

Grades:
6-8
Unit:
Lesson Number:
2
Description:

Students will expose solar cells to a light source from different distances and measure the output with a multimeter. They will compare and contrast the outputs that the different distances produce.

+
-
More Details Less Details
Learning Goal(s):
After the completion of this lab, students will be able to describe how the light intensity affects solar cell output, have practiced using a multimeter, and have analyzed collected data.
Author:
Todd Freiboth
Estimated Activity Length:
40 min
Solar Circuit

How Tilt Angle Affects Solar Cell Output

Grades:
6-8
Unit:
Lesson Number:
3
Description:

Students will expose solar cells to a light source from a set distance and measure the output with a multimeter. Students will change the angle that the light source strikes the solar panel and measure the resultant output. They will compare and contrast...

+
-
More Details Less Details
Learning Goal(s):
After the completion of this lab, students will be able to describe how the angle of light exposure affects solar cell output, have practiced using a multimeter, and have analyzed collected data.
Author:
Todd Freiboth
Estimated Activity Length:
40 min
Basic Stamp Microprocessor

Measuring Voltage Using a Microcontroller

Grades:
9-12
Lesson Number:
1
Description:

In this lesson students will be introduced to series circuits, resistors, a photoresistor and a microcontroller. There’s a lot here, but it boils down to making a voltage divider circuit and measuring the voltage at different points. A second circuit...

+
-
More Details Less Details
Learning Goal(s):
Students will apply Ohm’s Law. Students will use a multimeter to measure current, voltage, and resistance. Students will use a breadboard to set up a series circuit. Students will read circuit diagrams. Students will calculate times for an RC circuit to change state. Students will prove that resistors in series have an equivalent resistance equal to their individual sums. Students will program the Basic Stamp to measure voltage levels in a voltage divider and RC circuit.
Author:
Pat Blount
Estimated Activity Length:
2 hours
Basic Stamp Microprocessor

Controlling a Servo

Grades:
9-12
Lesson Number:
2
Description:

In this lesson students will learn how to control a servo using the Basic Stamp. Then students will combine the photoresistor from the previous lesson with the servo to create a light controlled servo.

+
-
More Details Less Details
Learning Goal(s):
Students will be able to apply the pulse width modulation to a servo from a Basic Stamp. Students will synthesize two circuit designs using one to control the other through the Basic Stamp.
Author:
Pat Blount
Estimated Activity Length:
1 hour
Basic Stamp Microprocessor

Creating a Light-Tracking Servo

Grades:
9-12
Lesson Number:
3
Description:

Students will learn how to program the Basic Stamp to use information from two photoresistors to point a servo at a light source. This will be the first degree of freedom for the flower head.

+
-
More Details Less Details
Learning Goal(s):
Students will synthesize the previous lesson for light metering and servo control to design a servo controlled by two photoresistors that will track a light source.
Author:
Pat Blount
Other Subjects Covered:
Estimated Activity Length:
1 hour