To see descriptions of all available curriculum by grade level, click here. To download a PDF of all available units, click here.

Solar Updraft

Let's Build Our Wind and Solar Energy Toy

Grades:
3-8
Lesson Number:
4
Description:

Students will combine what they learned in previous lessons using their investigations of convection-related phenomena to design a device that will convert light energy from the sun into thermal energy and utilize the resulting convection currents. Their...

+
-
More Details Less Details
Learning Goal(s):
Students will determine that thermal energy resulting from the sun’s radiation can create an updraft that will power a turbine to spin.                                                Students will identify characteristics of turbine design that improve the success of their device.Students will utilize content from previous phenomena they investigated, such as the chimney stack effect and Norwegian candle toys, to determine how to best harness the energy transformed by their device from the sun.
Pedagogy & Practice:
Author:
Lisa Morgan
Estimated Activity Length:
3 hours
Solar Updraft Tower

Learning About Solar Updraft Towers

Grades:
3-8
Lesson Number:
5
Description:

This lesson helps students learn about solar updraft towers being planned and built around the world to help solve the energy crisis by using unlimited power from the sun. This will provide real world context to the engineering challenge they engaged in...

+
-
More Details Less Details
Learning Goal(s):
Students will be able to define and explain what a solar updraft tower is.Students will make connections between their previous engineering challenge and a real world solution to the world’s growing energy demands, including careers.
NGSS Science and Engineering Practices:
Author:
Lisa Morgan
Other Subjects Covered:
Estimated Activity Length:
0 sec

How might we design a battery that reduces e-waste? Phenomenon and Exploration

Grades:
4-5
Lesson Number:
1
Description:

During this introduction lesson series students will explore the guiding phenomenon to understand e-waste and connect it to battery design. Students will utilize online resources to learn about problems from e-waste around the world and the environmental...

+
-
More Details Less Details
Learning Goal(s):
1.Students will learn about the phenomenon of e-waste through online resources to explore the history of electronics.2.Students will ask questions and define problems involving the environmental impact of electronics and human impact.3.Students will evaluate and obtain information about electronic waste from online resources such as news articles and videos.4.Students will learn (or review) knowledge of circuits to design a model and explain how a circuit works.
Author:
Jonathan Strunin
Estimated Activity Length:
2 hours

Exploring Eco-Friendly Battery Design

Grades:
4-5
Lesson Number:
2
Description:

In this lesson students will experiment with everyday household items to make batteries. Students will use lemons, potatoes, pennies, and cola to make batteries, and compare the amount of voltage produced. These lessons can be expanded to test a variety of...

+
-
More Details Less Details
Learning Goal(s):
1.Students will explore methods to produce energy from everyday items such as potatoes, lemons, pennies, and cola.2.Students will explore battery design and transfer of energy through hands on experiments with household items.3.Students will measure voltage and experiment methods to increase voltage. 4.Students will extend lessons to test out a variety of other materials such as varieties of fruits, vegetables, and sodas to compare different voltage produced. 5.Students will collect and record data from all their experiments to compare the different voltage produced. 6.Students will display data in charts or graphs to analyze the outcomes of their experiments. 
Author:
Jonathan Strunin
Estimated Activity Length:
2 hours

Engineering Clean Energy for Our Community

Grades:
4-5
Lesson Number:
3
Description:

This lesson plan will engage students in a design process to power a motor using a variety of energy sources. Students will compare different clean energy sources to decide which energy source will complete their design goal. Students will experiment with...

+
-
More Details Less Details
Learning Goal(s):
1.Students will define “clean energy” and explain at least 4 types of alternative energy sources2.Students will compare local energy sources and national energy sources to potential energy sources being used or developed.3.Students will experiment with wind energy, solar energy, and hydrogen fuel cell model vehicles to explore alternative fuel sources.4.Students will measure voltage produced and record data in a table format.5.Students will discuss pros and cons of the different types of energy.
Author:
Jonathan Strunin
Estimated Activity Length:
5 hours

Unit Plan: Understand E-Waste Through Battery Design

Grades:
4-5
Description:

In this lesson students will further explore their understanding of energy, electricity, and basic circuits. Students will begin their exploration of batteries by questioning where batteries end up when we are done using them, making connections to e-waste...

+
-
More Details Less Details
Learning Goal(s):
1.Students will make connections to real world problem solving with e-waste.2.Students will explore battery design and transfer of energy through hands on experiments with household items.3.Students will evaluate and analyze problems with e-waste and research solutions.4.Students will draw and label models to explain circuits demonstrating the movement of energy.5.Students will be able to explain how the measured and compared batteries based on the knowledge learned about volts and using a voltmeter.
Author:
Jonathan Strunin
Estimated Activity Length:
10 hours
SODIS_UV Treament

Solar and SODIS: Creating Clean Water for the World

Grades:
5-8
Description:

According to Nobel Laureate Richard Smalley, the number one and two challenges for humanity are energy and clean water. This classroom activity will introduce students to a low cost, renewable technique that connects these two issues. During the activity,...

+
-
More Details Less Details
Learning Goal(s):
Students will be introduced to the range of microbes in the environment, understand the risks of “dirty water” and be able to explain how energy from the sun can purify water through the SODIS technique.
Author:
Jamie Repasky
Estimated Activity Length:
1 hour
Solar Tracker

Solar Tracker Challenge

Grades:
5-7
Description:

Students will build a simple circuit that can be used to track a light source. This circuit will be used as a springboard for discussion into the engineering design process, solar tracking, and basic electricity and circuits. The simple solar tracker...

+
-
More Details Less Details
Learning Goal(s):
Students observe and replicate a simple solar tracker; learn basic electric circuits and terminology; reflect on possible improvements for solar tracker; and reflect on how the engineering design process is used daily.
NGSS Science and Engineering Practices:
Author:
Jamie Repasky
Estimated Activity Length:
1 hour