To see descriptions of all available curriculum by grade level, click here. To download a PDF of all available units, click here.

Solar Thermal Jug

Passive Solar Water Heating

Grades:
6-12
Lesson Number:
1
Description:

Students retrofit milk jugs to absorb and retain the most solar energy. This process involves students collecting data that measures the impacts of different variables on the solar energy absorbed by each collection device. Students should be able to see...

+
-
More Details Less Details
Learning Goal(s):
1. Students will cover/manipulate milk jugs to achieve the most solar energy absorption. 2. Students will calculate the joules of energy absorbed by the solar heated water. 3. Students will measure and graph the temperature changes of their solar milk jugs. 4. Students will gain an understanding of the amount of energy in sunlight.
Author:
Tami Church
Estimated Activity Length:
2 hours
Compost Heater

Compost Bioreactor Design

Grades:
7-12
Lesson Number:
2
Description:

Solar energy is available when the sun shines but energy can be supplemented at night by the release of energy during the composting of organic waste. In this activity, we will experiment with the feasibility of harnessing thermal energy to heat water with...

+
-
More Details Less Details
Learning Goal(s):
1. Students will research the science of composting and proper maintenance methods to build their own bioreactor. 2. Students will research the proper composition of compost for maximum heat production. 3. Students will transfer the thermal energy in compost to a container of water heat water with by placing a vessel in the middle of the active compost/bioreactor.
Author:
Tami Church
Estimated Activity Length:
2 hours
Wort Chiller

Bioreactor Water Circulation System

Grades:
7-12
Lesson Number:
3
Description:

Solar energy is available when the sun shines but energy can be supplemented at night by the decomposition energy in a bioreactor. In this activity we will experiment with the feasibility of using heated water in a bioreactor to circulate it through a...

+
-
More Details Less Details
Learning Goal(s):
1. Students will examine the properties of solar water pumping systems using KidWind solar water pumps or similar water pumps. 2. Students will experiment with the properties of water and its limitations in circulating due to pump power and distance. 3. Students will evaluate the use of a heat sink/chiller in the circulation of water through the bioreactor.
Author:
Tami Church
Estimated Activity Length:
4 hours
US DOE WInd Turbines

Variables Affecting Wind Turbine Power

Grades:
7-8
Lesson Number:
5
Description:

Now that students are familiar with how mechanical electricity generation works, they will build a wind turbine powered by a box fan. Different teams will test different turbine variables to see how the amount of electrical power is affected. After each...

+
-
More Details Less Details
Learning Goal(s):
• Students will be able to identify and explain at least three variables that affect the efficiency of wind turbines • Students will conduct a scientific investigation to determine which wind turbine configuration will generate the most power
Author:
Craig Marais
Estimated Activity Length:
4 hours
Solar Circuit

Variables Affecting Solar Power

Grades:
7-8
Lesson Number:
6
Description:

Students will plan and condict an investigation into solar photovoltaic technologies to determine what variables affect the output of panels. They will calculate and compare their exploration of solar panels to their previous investigation of wind turbines...

+
-
More Details Less Details
Learning Goal(s):
• Students will be able to identify and explain at least three variables that effect the efficiency of photovoltaic cells • Students will conduct a scientific investigation to determine which photovoltaic cell configuration will generate the most power.
Author:
Craig Marais
Estimated Activity Length:
2 hours