Solar Mobile

Solar Mobile Design Challenge - Construction

Grades:
6-8
Lesson Number:
5
Description:
This is the culminating hands-on project for the Solar Mobile Design Challenge Lessons, with construction aligned to an engineering design process. Students start by Restating the Design Problem that was introduced to them in the beginning of the Unit. Next,...
+
-
More Details Less Details
Learning Goal(s):
Students brainstorm ideas and share with their group.Students draw and label Solar Mobile designs in Engineering Notebooks. Students research an aircraft to trace (if this was not accomplished in the Center of Gravity lesson) and trace the aircraft outline onto foam board. Students construct a solar circuit to power motors and propellers on a foam board aircraft and test multiple times before adding to the solar mobile stand. Students construct solar mobile stand and add their aircraft to a dowel attached to the central hub. Students work with a partner to balance each aircraft onto the mobile. Students test the mobile speed outside (depending on weather) and compare to speed under indoor light stands. After initial testing, students redesign circuits or mobile construction to optimize design. Students use hand-held devices to film their moving Mobiles to judge the machine’s speed. Students demonstrate how their Solar Mobile works and justify in writing why their mobile should be chosen for the Children’s Technology Museum. 
Author:
Kristy Schneider
Other Subjects Covered:
Estimated Activity Length:
6 hours
Solar Mobile

Light Source Efficiency: Exploring Irradiance

Grades:
6-8
Lesson Number:
4
Description:
This lesson explores the concept of irradiance by having students use a Vernier Pryanometer. Using the “Light Source Efficiency” worksheet to guide their work, students measure irradiance as compared to the Sun’s irradiance to see what would be the best li...
+
-
More Details Less Details
Learning Goal(s):
Using a Vernier Pyranometer, students will measure electromagnetic radiation in watts per square meter (W/m2 ). Students will compare Sunlight irradiance with various indoor lighting options. Students will make a recommendation as to the optimum indoor lighting for powering solar panels. 
Author:
Kristy Schneider
Estimated Activity Length:
2 hours
Solar Mobile

Exploring Circuits and Optimum Power

Grades:
6-8
Lesson Number:
2
Description:
This lesson is an exploratory learning cycle that will give the instructor input as to where students are in their understanding of circuits and also scaffolds student learning. This lesson starts by engaging students by using an Energy Stick. Then, students...
+
-
More Details Less Details
Learning Goal(s):
Students build series circuits using “grain of wheat bulb” and LEDs powered by various low voltage solar panels. Students build parallel circuits using grain of wheat and LED bulbs powered by various low voltage solar panels. Students demonstrate and draw the energy transfer using solar energy. Students draw a circuit diagram of their final optimal circuit. Students design an optimal circuit model that will be used in their final project. 
Author:
Kristy Schneider
Other Subjects Covered:
Estimated Activity Length:
3 hours
Solar Mobile

Introducing the Solar Mobile Design Challenge

Grades:
6-8
Lesson Number:
1
Description:
This lesson is aimed to engage students and build excitement for their future engineering design challenge of building the fastest Solar Powered Mobile. Through multi-media resources, Students will encounter real life solar aircrafts and a room-sized Solar...
+
-
More Details Less Details
Learning Goal(s):
Students will be introduced to solar aircraft. Students will form and write questions about solar aircraft into their Engineering Notebooks setting the stage for future questions.Students will be introduced to a room-sized solar mobile and add additional questions to their engineering notebook.Students will be introduced to the engineering design scenario. 
NGSS Science and Engineering Practices:
Author:
Kristy Schneider
Other Subjects Covered:
Estimated Activity Length:
1 hour
Solar Mobile

Solar Mobile Design Challenge Unit Plan

Grades:
6-8
Description:
This unit involves students learning about transferring solar energy to small motors, exploring the center of gravity and testing light sources (including the sun). The culminating engineering design project gives students the chance to pull together their...
+
-
More Details Less Details
Learning Goal(s):
Students will design circuits using various solar panels in order to power motors with propellers. Students will learn about solar energy transfer in order to power the motors on their solar aircraft.Students will research an aircraft and draw an outline of the aircraft onto foam board. Students will explore the concept of center of gravity. Students will test the efficiency of various light sources (incandescent, fluorescent, LED, halogen) for usage by a PV cell.Students will use their prior testing results and knowledge to engineer a solar-powered mobile. Students will work to transfer the most energy from the solar panels considering all the tested variables in order to power the fastest, most efficient mobile.Students will demonstrate and explain why their solar mobile should be chosen for the solar mobile display in the children’s museum. 
Author:
Kristy Schneider
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
0 sec
Design a 50 Year Energy Plan

What is Our Plan?

Grades:
9-12
Lesson Number:
6
Description:
With all the pieces in place, this Unit’s final lesson asks students to code a spreadsheet that calculates and mathematically predicts the environmental impacts of different energy sources and strategies over a 50 year timespan. Divided into five different...
+
-
More Details Less Details
Learning Goal(s):
1. Students utilize their knowledge of energy’s impact on global systems as well as the process of energy generation in order to inform their development of a 50-year Energy Plan divided into decades. 
Author:
Bradford Hill
Estimated Activity Length:
5 hours
Design a 50 Year Energy Plan

Scaling up to Power Production Let’s use Data to Optimize the Performance of a Solar Cell Array

Grades:
9-12
Lesson Number:
4
Description:
Somewhat similar to the first part of the wind turbine project from Lesson 3, students are tasked with optimizing the performance of a photovoltaic system. This objective both allows students to apply the engineering-design process they absorbed in previous...
+
-
More Details Less Details
Design a 50 Year Energy Plan

50 Year Energy Plan - Unit Plan

Grades:
9-12
Description:
Throughout this creative, hands-on Unit, students are challenged to scale up every Disciplinary Core Idea and Science & Engineering Practice they’ve learned - from simple electricity generation, to building their own stereo speakers and DIY electric...
+
-
More Details Less Details
Learning Goal(s):
Explore causes and effects of climate change as related to energy production. Develop a working understanding of varying stakeholder perspectives on the causes and effects of climate change. Through hands-on exploration, build a working speaker that can connect to a cellphone. Use DIY speakers as a model to observe the process of producing electrical currents with a simple generator. Design, build and refine a wind turbine to efficiently convert mechanical energy into electrical energy. Design, build and refine a system that is the most effective at converting the sunlight into electrical energy. Students develop models to study the relationship between the Earth’s atmospheric composition and the Earth’s surface temperatures using simple diagrams. Students reflect on the impact of energy sources and power production on the environment. Students utilize their knowledge of how energy generation processes impacts the environment to inform how and why they develop a 50-year Energy Plan for their local community. 
Author:
Bradford Hill
Estimated Activity Length:
0 sec
Solar Cell Manufacture

Research and Evaluate the Impact on the Environment and Society of Converting Natural Resources into PV Cells

Grades:
7-8
Lesson Number:
4
Description:
Students will engage in guided research to explore resource acquisition, material processing, and electricity generation associated with photovoltaic cells. Opportunity for differentiation exists in the level of assistance in guiding the research, the...
+
-
More Details Less Details
Learning Goal(s):
1. Students will evaluate information to describe the impact on society from resource extraction and materials-processing for PV cells.2. Students will communicate their understandings of different impacts from converting natural resources into PV cells through participation in a Socratic Seminar. 
Author:
Melody Childers
Estimated Activity Length:
6 hours
Fuel Inquiry Poster

Fuels and PV Cells

Grades:
7-8
Lesson Number:
3
Description:
Students will return to the phenomena of energy resources to support safety, health, and comfort in an emergency situation. They will distinguish between how common materials provide energy and develop an understanding of how the atomic and molecular...
+
-
More Details Less Details
Learning Goal(s):
Students explore the conservation of mass in chemical reactions by observing and modeling combustion reactions and exploring the essential question/phenomena, “is all fire the same?” Students will use information resources and a 3D model of a PV cell to understand how solar modules generate electricity. “How do PV cells make electricity?”Students will construct circuits to explore PV modules and variables involved in powering devices. Students evaluate, revise, and justify the energy resources suggested on an emergency preparedness supply list. 
Author:
Melody Childers
Relevant NGSS PE:
Estimated Activity Length:
0 sec

Pages