Resource Type:
Source:
Advanced Energy Economy
Published:
2019
Last Updated:
2020
Intended Grade Level:
MS,
HS,
Post Secondary
Resource File(s):
Description:

The Advanced Energy Now 2019 Market Report is the sixth report of market size, by revenue, of the advanced energy industry, worldwide and in the United States.

Pedagogy & Practice:
Other Subjects Covered:

Unit Plan: Understand E-Waste Through Battery Design

Grades:
4-5
Description:

In this lesson students will further explore their understanding of energy, electricity, and basic circuits. Students will begin their exploration of batteries by questioning where batteries end up when we are done using them, making connections to e-waste...

+
-
More Details Less Details
Learning Goal(s):
1.Students will make connections to real world problem solving with e-waste.2.Students will explore battery design and transfer of energy through hands on experiments with household items.3.Students will evaluate and analyze problems with e-waste and research solutions.4.Students will draw and label models to explain circuits demonstrating the movement of energy.5.Students will be able to explain how the measured and compared batteries based on the knowledge learned about volts and using a voltmeter.
Author:
Jonathan Strunin
Estimated Activity Length:
10 hours
Solar Charger Diagram

Replacing Fossil Fuels?

Grades:
10-12
Lesson Number:
1
Description:

As students begin to look at the role photovoltaics might play within the transportation energy sector, it is important for them to understand why the phasing-out of fossil fuels is such a daunting task. This lesson is designed to help students comprehend...

+
-
More Details Less Details
Learning Goal(s):
1. Students will define energy density. 2. Students will compare energy densities among various transportation fuel options. 3. Students will compare costs per unit of energy among various transportation fuel options. 4. Students will compare energy return on energy invested among various transportation fuel options. 5. Students will assess which fuels have the most potential to replace fossil fuels in the transportation sector using a weighted matrix.
Author:
Clayton Hudiburg
Relevant NGSS PE:
Estimated Activity Length:
1 hour

How might we design a battery that reduces e-waste? Phenomenon and Exploration

Grades:
4-5
Lesson Number:
1
Description:

During this introduction lesson series students will explore the guiding phenomenon to understand e-waste and connect it to battery design. Students will utilize online resources to learn about problems from e-waste around the world and the environmental...

+
-
More Details Less Details
Learning Goal(s):
1.Students will learn about the phenomenon of e-waste through online resources to explore the history of electronics.2.Students will ask questions and define problems involving the environmental impact of electronics and human impact.3.Students will evaluate and obtain information about electronic waste from online resources such as news articles and videos.4.Students will learn (or review) knowledge of circuits to design a model and explain how a circuit works.
Author:
Jonathan Strunin
Estimated Activity Length:
2 hours
Solar Charger Diagram

Background Research on Alternative Transportation Vehicles

Grades:
10-12
Lesson Number:
2
Description:

Students completing this lesson will already have identified some of the problems inherent in the development of ideas to replace fossil fuels in the transportation sector. Students will now conduct some research to identify some of the pros and cons of...

+
-
More Details Less Details
Learning Goal(s):
1. Students will define BEVs, HEVs, HFCVs, and HICEVs 2. Students will compare the above vehicles and relate the pros and cons of each technology 3. Students will begin to evaluate which type of technology might be best suited for the goal of replacing fossil fuels in the transportation sector 4. Students will begin to brainstorm ideas for how solar energy might be used to enhance these technologies
Author:
Clayton Hudiburg
Other Subjects Covered:
Estimated Activity Length:
1 hour

Exploring Eco-Friendly Battery Design

Grades:
4-5
Lesson Number:
2
Description:

In this lesson students will experiment with everyday household items to make batteries. Students will use lemons, potatoes, pennies, and cola to make batteries, and compare the amount of voltage produced. These lessons can be expanded to test a variety of...

+
-
More Details Less Details
Learning Goal(s):
1.Students will explore methods to produce energy from everyday items such as potatoes, lemons, pennies, and cola.2.Students will explore battery design and transfer of energy through hands on experiments with household items.3.Students will measure voltage and experiment methods to increase voltage. 4.Students will extend lessons to test out a variety of other materials such as varieties of fruits, vegetables, and sodas to compare different voltage produced. 5.Students will collect and record data from all their experiments to compare the different voltage produced. 6.Students will display data in charts or graphs to analyze the outcomes of their experiments. 
Author:
Jonathan Strunin
Estimated Activity Length:
2 hours
Solar Charger Diagram

Can Portable PV Charge Vehicles?

Grades:
10-12
Lesson Number:
3
Description:

In this lesson, students will begin to explore the potential and challenges related to using photovoltaics to supplement the power needed to charge batteries in BEVs. Students will test a variety of wiring options related to series and parallel wiring....

+
-
More Details Less Details
Learning Goal(s):
Students will explore the role of series and parallel wiring as they pertain to voltage and amperage.Students will explore the processes involved with charging batteries and relate these processes to voltage and amperage.Students will test photovoltaic modules to identify voltage and amperage outputs.Students will calculate, using data from field tests, the maximum power that can be produced using photovoltaics within the constraints of a typical passenger vehicle’s surface area.Students will calculate charging times using various PV array power ratings.
Author:
Clayton Hudiburg
Estimated Activity Length:
2 hours
Design a 50 Year Energy Plan

Scaling up to Power Production: Let’s Engineer a Wind Turbine

Grades:
9-12
Lesson Number:
3
Description:

After working through Lessons 1 and 2 of this Unit, students are now familiar with the physics of how generators work. The next step in Lesson 3 is to investigate how existing power generation systems operate and supply electricity to entire geographic...

+
-
More Details Less Details
Learning Goal(s):
1. Design, build, and refine a wind turbine in order to effectively and efficiently convert motion into mechanical energy and then into electrical energy 
Author:
Bradford Hill
Relevant NGSS PE:
Estimated Activity Length:
5 hours

Engineering Clean Energy for Our Community

Grades:
4-5
Lesson Number:
3
Description:

This lesson plan will engage students in a design process to power a motor using a variety of energy sources. Students will compare different clean energy sources to decide which energy source will complete their design goal. Students will experiment with...

+
-
More Details Less Details
Learning Goal(s):
1.Students will define “clean energy” and explain at least 4 types of alternative energy sources2.Students will compare local energy sources and national energy sources to potential energy sources being used or developed.3.Students will experiment with wind energy, solar energy, and hydrogen fuel cell model vehicles to explore alternative fuel sources.4.Students will measure voltage produced and record data in a table format.5.Students will discuss pros and cons of the different types of energy.
Author:
Jonathan Strunin
Estimated Activity Length:
5 hours
Solar Charger Diagram

Designing a Solar Charger

Grades:
10-12
Lesson Number:
4
Description:

In this lesson, students will further explore the potential and challenges related to using photovoltaics to supplement the power needed to charge batteries in BEVs. Students will be provided with a 12 V lead-acid battery and several 3 V, 1.5 A solar...

+
-
More Details Less Details
Learning Goal(s):
1. Students will explore the role of series and parallel wiring as they pertain to voltage and amperage. 2. Students will explore the processes involved with charging batteries and relate these processes to voltage and amperage. 3. Students will test photovoltaic modules to identify voltage and amperage outputs. 4. Students will design a system of wiring 3 V, 1.5 A modules together as a means to charge a 12 V lead-acid battery 5. Students will predict and test the effectiveness of their designed solar charger.
Author:
Clayton Hudiburg
Estimated Activity Length:
4 hours