Design a 50 Year Energy Plan

What is Our Plan?

Grades:
9-12
Learning Goal(s):
1. Students utilize their knowledge of energy’s impact on global systems as well as the process of energy generation in order to inform their development of a 50-year Energy Plan divided into decades. 
+
-
More Details Less Details
Design a 50 Year Energy Plan

Scaling up to Power Production: Let’s Engineer a Wind Turbine

Grades:
9-12
Learning Goal(s):
1. Design, build, and refine a wind turbine in order to effectively and efficiently convert motion into mechanical energy and then into electrical energy 
+
-
More Details Less Details
Design a 50 Year Energy Plan

50 Year Energy Plan - Unit Plan

Grades:
9-12
Learning Goal(s):
Explore causes and effects of climate change as related to energy production. Develop a working understanding of varying stakeholder perspectives on the causes and effects of climate change. Through hands-on exploration, build a working speaker that can connect to a cellphone. Use DIY speakers as a model to observe the process of producing electrical currents with a simple generator. Design, build and refine a wind turbine to efficiently convert mechanical energy into electrical energy. Design, build and refine a system that is the most effective at converting the sunlight into electrical energy. Students develop models to study the relationship between the Earth’s atmospheric composition and the Earth’s surface temperatures using simple diagrams. Students reflect on the impact of energy sources and power production on the environment. Students utilize their knowledge of how energy generation processes impacts the environment to inform how and why they develop a 50-year Energy Plan for their local community. 
+
-
More Details Less Details
Sphero SPRK+

Solar SPRK+ Unit Overview

Grades:
6-8
Learning Goal(s):
Students will develop tools to use in the Engineering Design Process.Students will learn drag and drop programming with Sphero Edu (formerly Lightning Lab).Students will determine how series and parallel circuits affect voltage and current.Students will understand how to use photovoltaic sources to charge a SPRK+.Students will design a chariot to carry a photovoltaic power source for a SPRK+.Students will learn to program a SPRK+ ball and chariot through a maze.
+
-
More Details Less Details
Solar Charger Diagram

Photovoltaic Solutions "Shark-Tank Style"

Grades:
10-12
Learning Goal(s):
1. Students will use data and mathematics to design a solution for using PV technology in the transportation sector. 2. Students will create a presentation with visuals and specs outlining their proposed solution. 3. Students will present and attempt to “sell” their products to a panel of judges.
+
-
More Details Less Details
Lesson Number:
5
Author:
Clayton Hudiburg
Estimated Activity Length:
5 hours
Solar Charger Diagram

Designing a Solar Charger

Grades:
10-12
Learning Goal(s):
1. Students will explore the role of series and parallel wiring as they pertain to voltage and amperage. 2. Students will explore the processes involved with charging batteries and relate these processes to voltage and amperage. 3. Students will test photovoltaic modules to identify voltage and amperage outputs. 4. Students will design a system of wiring 3 V, 1.5 A modules together as a means to charge a 12 V lead-acid battery 5. Students will predict and test the effectiveness of their designed solar charger.
+
-
More Details Less Details
Solar Charger Diagram

Can Portable PV Charge Vehicles?

Grades:
10-12
Learning Goal(s):
Students will explore the role of series and parallel wiring as they pertain to voltage and amperage.Students will explore the processes involved with charging batteries and relate these processes to voltage and amperage.Students will test photovoltaic modules to identify voltage and amperage outputs.Students will calculate, using data from field tests, the maximum power that can be produced using photovoltaics within the constraints of a typical passenger vehicle’s surface area.Students will calculate charging times using various PV array power ratings.
+
-
More Details Less Details
Solar Charger Diagram

Background Research on Alternative Transportation Vehicles

Grades:
10-12
Learning Goal(s):
1. Students will define BEVs, HEVs, HFCVs, and HICEVs 2. Students will compare the above vehicles and relate the pros and cons of each technology 3. Students will begin to evaluate which type of technology might be best suited for the goal of replacing fossil fuels in the transportation sector 4. Students will begin to brainstorm ideas for how solar energy might be used to enhance these technologies
+
-
More Details Less Details
Lesson Number:
2
Pedagogy & Practice:
Author:
Clayton Hudiburg
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
1 hour
Solar Charger Diagram

Replacing Fossil Fuels?

Grades:
10-12
Learning Goal(s):
1. Students will define energy density. 2. Students will compare energy densities among various transportation fuel options. 3. Students will compare costs per unit of energy among various transportation fuel options. 4. Students will compare energy return on energy invested among various transportation fuel options. 5. Students will assess which fuels have the most potential to replace fossil fuels in the transportation sector using a weighted matrix.
+
-
More Details Less Details
Lesson Number:
1
Author:
Clayton Hudiburg
Relevant NGSS PE:
Estimated Activity Length:
1 hour
Arduino Angler Design

Illuminate Me: Merging Conductive Sewing, Technology, and Solar Power

Grades:
7-12
Learning Goal(s):
1. Students will design and sew a wearable circuit using conductive thread. 2. Students will program a wearable microcontroller to light up garment with bright LEDs. 3. Students will incorporate solar power into a wearable garment project by recharging NiMH batteries for a renewable energy battery pack. 4. Students will apply knowledge of circuitry and energy transfer to maximize design.
+
-
More Details Less Details

Pages