To see descriptions of all available curriculum by grade level, click here. To download a PDF of all available units, click here.

Magnetic Field Filings

Three Ways to Generate Electricity

Grades:
7-8
Lesson Number:
4
Description:

This lesson gives students hands-on experiences with the attraction and repulsion of magnets including experiments with how the strength of attraction and repulsion varies with distance. Students see how magnets are used in motors but also in electric...

+
-
More Details Less Details
Learning Goal(s):
Students will be able to: • Detect the relative strength of magnetic fields at different distances from a magnet • Explain the energy transformations occurring in each part of a circuit • Identify three different methods for generating electricity
Author:
Craig Marais
Relevant NGSS PE:
Estimated Activity Length:
3 hours
Electric Current Induction

Introduction to Electromagnetism

Grades:
6-12
Lesson Number:
1
Description:

Through a series of goal-oriented activities and research, students will build physical models that demonstrate the interactions between magnetism and magnetic fields as well as interactions between magnetism and electric fields. Students will be...

+
-
More Details Less Details
Learning Goal(s):
1. Students will demonstrate energy transfer through space using electromagnetic phenomena. 2. Students will design a model that demonstrates that a current-carrying wire can induce magnetism. 3. Students will define and build an electromagnet. 4. Students will demonstrate electromagnetic induction.
Author:
Tabatha Roderick
Estimated Activity Length:
3 hours
Wave Attenuator

Building a Tidal Wave Attenuator

Grades:
6-12
Lesson Number:
2
Description:

This lesson is designed to build upon investigations of electromagnetic energy by applying these phenomena to transfer the kinetic energy moving in waves to electricity by building a wave attenuator.

+
-
More Details Less Details
Learning Goal(s):
1. Students will describe and model the energy transfer and transformation in a wave attenuator. 2. Students will build a wave attenuator using a diagram and selected materials. 3. Students will test the model wave attenuator they built.
Author:
Tabatha Roderick
Estimated Activity Length:
2 hours
Wave Attenuator

Testing a Tidal Wave Attenuator

Grades:
6-12
Lesson Number:
3
Description:

Students will test the efficiency of the tidal wave attenuator models that they previously built. They will determine variables on their models they can manipulate, such as wire gauge and magnet strength, and measure the effects of manipulating this...

Energy Content:
+
-
More Details Less Details
Learning Goal(s):
1. Students will investigate variables that may affect the output of an energy conversion device (wave attenuator). 2. Students will interpret data to identify which variables increase electrical output for these model wave attenuators. 3. Students will communicate results from scientific inquiry to identify factors that are important to optimizing the design of a wave attenuator.
Author:
Tabatha Roderick
Estimated Activity Length:
5 hours
Electric Current Induction

Wave Attenuator Unit Overview

Grades:
6-12
Description:

Through a series of learning experiences, students will experiment with the basic concepts of motion to electrical energy transformation. Students start by building a series of models that demonstrate the interactions between magnetic and electric fields....

+
-
More Details Less Details
Learning Goal(s):
1. Students will demonstrate energy transfer through space using electromagnetic phenomena. 2. Students will design a model that demonstrates that a current-carrying wire can induce magnetism. 3. Students will define and build an electromagnet. 4. Students will demonstrate electromagnetic induction. 5. Students will describe and model the energy transfer and transformation in a wave attenuator. 6. Students will build a wave attenuator using a diagram and selected materials. 7. Students will test the model wave attenuator they built. 8. Students will investigate variables that may affect the output of an energy conversion device (wave attenuator). 9. Students will interpret data to identify which variables increase electrical output for these model wave attenuators. 10. Students will communicate results from scientific inquiry to identify factors that are important to optimizing the design of a wave attenuator.
Author:
Tabatha Roderick
Estimated Activity Length:
10 hours