To see descriptions of all available curriculum by grade level, click here. To download a PDF of all available units, click here.

Unit Plan: A Community Powered by Renewable Energy

Grades:
6-12
Description:
In this three-part comprehensive place-based and project-based unit, students will learn and apply rebnewable energy content to devise action plans at an individual, family, and local level. Students will use primary and secondary research explore energy...
+
-
More Details Less Details
Learning Goal(s):
LEARNING GOALS – PART 11.Students will define and explain the differences between renewable and non-renewable energy sources.2.Students will research, summarize, and present the (short- and long-term) benefits and drawbacks of utilizing wind and solar energy. 3.Students will research, summarize, and present the (short- and long-term) benefits and drawbacks of utilizing fossil fuels.4.Students will generate questions about the greenhouse gas effect, identify and isolate variables, and then conduct an experiment to answer a class generated question about the greenhouse gas effect.5.Through Socratic seminar, students will use the knowledge gained over the course of this lesson to discuss the potential long- and short-term benefits and drawbacks of using fossil fuels, solar energy, and wind energy.6.Students will define scientific vocabulary related to electricity.7.Students will be able to describe how electricity moves through a conductor.8.Students will draw and describe series and parallel circuits.9.Students will identify ways that energy is consumed within their homes.10.Students will perform an energy audit of their home and calculate the amount of energy used by each electronic device and appliances.11.Students will create a spreadsheet demonstrating the electricity required to operate each electronic device and appliance, along with a summary of finding that clearly identifies how energy consumption can be reduced within their home.12.Students will explore various ways to reduce energy (goal is 30% reduction).13.Students will propose a variety of energy reduction plans and present those options to their families for discussion.14.After discussion with their families, students will itemize the agreed upon plan and identify specific actions that result in quantifiable outcomes that will implemented to reduce energy consumption by their families.LEARNING GOALS – PART 21.Students will gain background information regarding the limitations of having and wind and solar generating infrastructure within city and county limits, including environmental, aesthetic, and cultural considerations. 2.Students will work with professionals to compile criteria for placement of wind and solar energy sources.3.Students will conduct experiments to collect and analyze data to provide a conclusion to the questions: What is the optimal blade angle for generating the most energy? What is the optimal wind speed for generating the most energy?4.Students will use prevailing wind data in your region to examine energy output of various sized small wind turbines as wind speeds incrementally increase.5.Based on local wind speeds, students will determine a range of potential kilowatt generation from wind power.6.Students will conduct experiments to determine how electrical output of solar panels change as the tilt, azimuth, and shade coverage change.7.Students will generate, compare, and evaluate various solar configurations for a solar project in your region.LEARNING GOALS – PART 31.Students will utilize previously acquired information about energy needs to create a renewable energy proposal for your town or city.2.Students will perform a solar audit on their homes and use class averages to project the amount of solar energy that can be generated on residential properties.3.Students will assess where commercial and municipal solar projects can occur within your town or city to meet the energy needs for non-residential consumers.4.Students will determine potential locations for larger-scale wind and solar farms to augment the remaining energy needs of the community.5.Students will prepare a comprehensive renewable energy plan that totals the calculations for potential residential, commercial, and agency renewable energy generation.6.Students will calculate the average amount of energy generated by wind turbines and solar panels in various conditions to determine the quantity of renewable energy sources required to power the city.7.Students will use their projected energy calculations to propose a combination of wind and solar sources to meet your locality’s energy needs, based on benefits and drawbacks of each source of energy.8.Based on prevailing winds and building orientation, students will explore potential sites for wind turbines and solar panels.9.Students will develop a final proposal to meet future energy needs through a combination of energy generation and reduction of energy consumption, prepare a brief slide presentation that summarizes their comprehensive plans, and present their finding to local energy conservation groups and local government staff or elected officials.
Author:
Jonathan Strunin
Estimated Activity Length:
10 hours

Part 1 - Lesson 1: Why Use Renewable Energy?

Grades:
6-12
Lesson Number:
1
Description:
The purpose of this lesson is for students to obtain base knowledge of how renewable and non-renewable energy is generated and identify differences between renewable resources and fossil fuels. Students will research the potential long-term and short-term...
+
-
More Details Less Details
Learning Goal(s):
1.Students will define and explain the differences between renewable and non-renewable energy sources.2.Students will research, summarize, and present the (short- and long-term) benefits and drawbacks of utilizing wind and solar energy.  3.Students will research, summarize, and present the (short- and long-term) benefits and drawbacks of utilizing fossil fuels.4.Students will generate questions about the greenhouse gas effect, identify and isolate variables, and then conduct an experiment to answer a class generated question about the greenhouse gas effect.5.Through Socratic seminar, students will use the knowledge gained over the course of this lesson to discuss the potential long- and short-term benefits and drawbacks of using fossil fuels, solar energy, and wind energy.
Author:
Jonathan Strunin
Relevant NGSS PE:
Estimated Activity Length:
8 hours
Hot Pack

Unit Plan - Chemical Differences in Emergency Energy Sources

Grades:
7-8
Description:
Students develop atomic and molecular models of energy resources, analyze combustion of various fuels and build circuits with Photovolatic (PV) modules to evaluate and suggest revisions to a disaster preparedness supply list. They then research and evaluate...
+
-
More Details Less Details
Learning Goal(s):
To build empathy for people in emergency situations and an understanding of how access to energy resources can increase one’s safety, health, and comfort. To understand the nature of a variety of energy needs and how different applications have different optimal solutions. To develop models to explain the molecular and extended structures of energy resources, including how the resources change when energy is generated (Electron movement in PV cells, combustion reactions in fuel). To understand that the properties of substances depends upon the atomic / molecular structure, which changes with chemical reactions. To build a circuit that includes a solar module and measure the voltage and current. To gather and evaluate information to describe the impact on society of converting natural resources into PV cells. To design, build and test a device that uses a chemical reaction to generate or absorb thermal energy. Evaluate and revise a plan for the energy resources one should store to prepare for a natural disaster. 
Author:
Melody Childers
Estimated Activity Length:
0 sec
Fuel Inquiry Poster

Fuels and PV Cells

Grades:
7-8
Lesson Number:
3
Description:
Students will return to the phenomena of energy resources to support safety, health, and comfort in an emergency situation. They will distinguish between how common materials provide energy and develop an understanding of how the atomic and molecular...
+
-
More Details Less Details
Learning Goal(s):
Students explore the conservation of mass in chemical reactions by observing and modeling combustion reactions and exploring the essential question/phenomena, “is all fire the same?” Students will use information resources and a 3D model of a PV cell to understand how solar modules generate electricity. “How do PV cells make electricity?”Students will construct circuits to explore PV modules and variables involved in powering devices. Students evaluate, revise, and justify the energy resources suggested on an emergency preparedness supply list. 
Author:
Melody Childers
Relevant NGSS PE:
Estimated Activity Length:
0 sec
Solar Charger Diagram

Replacing Fossil Fuels?

Grades:
10-12
Lesson Number:
1
Description:
As students begin to look at the role photovoltaics might play within the transportation energy sector, it is important for them to understand why the phasing-out of fossil fuels is such a daunting task. This lesson is designed to help students comprehend the...
+
-
More Details Less Details
Learning Goal(s):
1. Students will define energy density. 2. Students will compare energy densities among various transportation fuel options. 3. Students will compare costs per unit of energy among various transportation fuel options. 4. Students will compare energy return on energy invested among various transportation fuel options. 5. Students will assess which fuels have the most potential to replace fossil fuels in the transportation sector using a weighted matrix.
Author:
Clayton Hudiburg
Relevant NGSS PE:
Estimated Activity Length:
1 hour
Solar Charger Diagram

Background Research on Alternative Transportation Vehicles

Grades:
10-12
Lesson Number:
2
Description:
Students completing this lesson will already have identified some of the problems inherent in the development of ideas to replace fossil fuels in the transportation sector. Students will now conduct some research to identify some of the pros and cons of...
+
-
More Details Less Details
Learning Goal(s):
1. Students will define BEVs, HEVs, HFCVs, and HICEVs 2. Students will compare the above vehicles and relate the pros and cons of each technology 3. Students will begin to evaluate which type of technology might be best suited for the goal of replacing fossil fuels in the transportation sector 4. Students will begin to brainstorm ideas for how solar energy might be used to enhance these technologies
Pedagogy & Practice:
Author:
Clayton Hudiburg
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
1 hour
Solar Charger Diagram

Can Portable PV Charge Vehicles?

Grades:
10-12
Lesson Number:
3
Description:
In this lesson, students will begin to explore the potential and challenges related to using photovoltaics to supplement the power needed to charge batteries in BEVs. Students will test a variety of wiring options related to series and parallel wiring. Once...
+
-
More Details Less Details
Learning Goal(s):
Students will explore the role of series and parallel wiring as they pertain to voltage and amperage.Students will explore the processes involved with charging batteries and relate these processes to voltage and amperage.Students will test photovoltaic modules to identify voltage and amperage outputs.Students will calculate, using data from field tests, the maximum power that can be produced using photovoltaics within the constraints of a typical passenger vehicle’s surface area.Students will calculate charging times using various PV array power ratings.
Author:
Clayton Hudiburg
Estimated Activity Length:
2 hours
Sources of Energy

Informative Writing: Where Does Energy Come From?

Grades:
3-8
Lesson Number:
1
Description:
This lesson is a (stand alone or in-unit) guided non-fiction research and writing project, which includes a differentiated choice menu and list of ideas for publishing the completed project. Each student will choose one of ten energy sources to research,...
+
-
More Details Less Details
Learning Goal(s):
Students will understand ten renewable and non-renewable energy sources on the earth.Students will learn the locations of different energy sources on the earth.Students will learn the history of energy sources and how they have been used by humans.Students will learn about innovations and inventions used to find, recover, store and release energy for human consumption.
Pedagogy & Practice:
Author:
Lisa Morgan
Estimated Activity Length:
10 hours

Unit Plan: Understand E-Waste Through Battery Design

Grades:
4-5
Description:
In this lesson students will further explore their understanding of energy, electricity, and basic circuits. Students will begin their exploration of batteries by questioning where batteries end up when we are done using them, making connections to e-waste...
+
-
More Details Less Details
Learning Goal(s):
1.Students will make connections to real world problem solving with e-waste.2.Students will explore battery design and transfer of energy through hands on experiments with household items.3.Students will evaluate and analyze problems with e-waste and research solutions.4.Students will draw and label models to explain circuits demonstrating the movement of energy.5.Students will be able to explain how the measured and compared batteries based on the knowledge learned about volts and using a voltmeter.
Author:
Jonathan Strunin
Estimated Activity Length:
10 hours

How might we design a battery that reduces e-waste? Phenomenon and Exploration

Grades:
4-5
Lesson Number:
1
Description:
During this introduction lesson series students will explore the guiding phenomenon to understand e-waste and connect it to battery design. Students will utilize online resources to learn about problems from e-waste around the world and the environmental...
+
-
More Details Less Details
Learning Goal(s):
1.Students will learn about the phenomenon of e-waste through online resources to explore the history of electronics.2.Students will ask questions and define problems involving the environmental impact of electronics and human impact.3.Students will evaluate and obtain information about electronic waste from online resources such as news articles and videos.4.Students will learn (or review) knowledge of circuits to design a model and explain how a circuit works.
Author:
Jonathan Strunin
Estimated Activity Length:
2 hours

Pages