Photovoltaic Module

How a Solar Cell Works: Photon Simulation

Grades:
4-8
Description:

The purpose of this activity is to simulate the movement of electrons at the p-n junction to create an electrical current. Students will play a modified game of musical chairs, where teams will compete against each other while creating their own...

+
-
More Details Less Details
Learning Goal(s):
To understand how a solar cell operates on the atomic level, through a simulation experience
Pedagogy & Practice:
NGSS Science and Engineering Practices:
Author:
Erin Sturtz
Other Subjects Covered:
Estimated Activity Length:
50 min
Sphero SPRK+

Solar SPRK+ Unit Overview

Grades:
6-8
Unit:
Description:

This unit incorporates basic programming knowledge and solar energy into an engineering design challenge using Sphero SPRK+ robots. The theme for this challenge centers on the idea of Mars rovers, and the challenges faced in space exploration, specifically...

+
-
More Details Less Details
Learning Goal(s):
Students will develop tools to use in the Engineering Design Process.Students will learn drag and drop programming with Sphero Edu (formerly Lightning Lab).Students will determine how series and parallel circuits affect voltage and current.Students will understand how to use photovoltaic sources to charge a SPRK+.Students will design a chariot to carry a photovoltaic power source for a SPRK+.Students will learn to program a SPRK+ ball and chariot through a maze.
Author:
Deb Frankel
Estimated Activity Length:
10 hours
Sources of Energy

Energy Review: Practical and Technical Perspectives—What is Energy?

Grades:
4-8
Description:

Students will take a short field trip around the school to identify different types of energy.

+
-
More Details Less Details
Learning Goal(s):
To access prior knowledge about different forms of energy
NGSS Science and Engineering Practices:
Author:
Erin Sturtz
Estimated Activity Length:
50 min
Solar Circuit

Using a Multimeter to Analyze a Solar Circuit: Measuring Current and Voltage—Calculating Power and Resistance

Grades:
6-12
Description:

Students will set up a simple circuit using a multimeter and a load resistor to measure the voltage and current in the circuit. Students will learn to use a multimeter, learn how to calculate power and be introduced to Ohm’s Law. This activity provides a...

Energy Content:
+
-
More Details Less Details
Learning Goal(s):
Students will understand that voltage is a measure of a difference in electric potential energy and that current is the rate at which charge flows through a circuit.Students will understand how to measure and quantify electricity. Students will become familiar with the relationships between the fundamental electrical quantities.
Author:
Emily Barrett
Estimated Activity Length:
1 hour
Source:
Washington Green Schools
Published:
2021
Last Updated:
2021
Intended Grade Level:
3-5,
MS
Description:

Washington Green Schools guides and supports students and school communities to be leaders for a healthy environment. As part of their efforts to promote sustainable schools, they have developed a series of games and activities to help students understand energy use in their school and engage in conversations about how to reduce their energy use and clean up their sources of energy.

Electric Current Induction

Wave Attenuator Unit Overview

Grades:
6-12
Description:

Through a series of learning experiences, students will experiment with the basic concepts of motion to electrical energy transformation. Students start by building a series of models that demonstrate the interactions between magnetic and electric fields....

+
-
More Details Less Details
Learning Goal(s):
1. Students will demonstrate energy transfer through space using electromagnetic phenomena. 2. Students will design a model that demonstrates that a current-carrying wire can induce magnetism. 3. Students will define and build an electromagnet. 4. Students will demonstrate electromagnetic induction. 5. Students will describe and model the energy transfer and transformation in a wave attenuator. 6. Students will build a wave attenuator using a diagram and selected materials. 7. Students will test the model wave attenuator they built. 8. Students will investigate variables that may affect the output of an energy conversion device (wave attenuator). 9. Students will interpret data to identify which variables increase electrical output for these model wave attenuators. 10. Students will communicate results from scientific inquiry to identify factors that are important to optimizing the design of a wave attenuator.
Author:
Tabatha Roderick
Estimated Activity Length:
10 hours
Source:
Institute for Science and Math Education
Published:
2016
Last Updated:
2020
Intended Grade Level:
PreK-2,
3-5,
MS,
HS,
OST
Resource File(s):
Description:

A fantastic one-page guide for educators to navigate different activities to promote collaborative science learning, based on the need/purpose andn timing of the activity. Includes stuent- and teacher led activities across a range of leanring styles. 

Location:
Source:
TERC
Published:
2012
Last Updated:
2020
Intended Grade Level:
PreK-2,
3-5,
MS,
HS,
OST
Resource File(s):
Description:

A simple reference for all student ages of talk moves and activities that educators can use to facilitate productive academic dialogue around new topics.

Location:
Source:
Allegheny Intermediate Unit
Published:
2020
Last Updated:
2020
Intended Grade Level:
PreK-2,
3-5
Description:

These STEM Packs for grades PreK-5 use picture books to engage students in a series of 40 minute pre-designed STEM lessons with associated materials. Many kits are reusable or easily refurbishable with basic materials. The topics are derived explicitly from NGSS and are aligned with the standards across multiple Disciplinary Core Ideas. CE and AIU co-developed two energy-focused Storytime STEM Packs, including "Boy Who Harnessed the Wind" investigation and engineering design and "My Papi has a Motorcycle" energy use exploration.

Location:

Pages