How might we design a battery that reduces e-waste? Phenomenon and Exploration

Grades:
4-5
Lesson Number:
1
Description:

During this introduction lesson series students will explore the guiding phenomenon to understand e-waste and connect it to battery design. Students will utilize online resources to learn about problems from e-waste around the world and the environmental...

+
-
More Details Less Details
Learning Goal(s):
1.Students will learn about the phenomenon of e-waste through online resources to explore the history of electronics.2.Students will ask questions and define problems involving the environmental impact of electronics and human impact.3.Students will evaluate and obtain information about electronic waste from online resources such as news articles and videos.4.Students will learn (or review) knowledge of circuits to design a model and explain how a circuit works.
Author:
Jonathan Strunin
Estimated Activity Length:
2 hours

TinkerCAD: Introduction to 3D Printing

Grades:
5-8
Lesson Number:
1
Description:

This lesson is designed to span 5 days with 50-minute sections. After the introduction day, each day the students work toward mastery on the TinkerCAD tutorial online to learn how to create printable 3D models. At the end of the 4 days the students will...

+
-
More Details Less Details

Cost Effective Solar Cells: Solar Energy Equity and Sustainability

Grades:
9-12
Lesson Number:
1
Description:

This lesson is designed to span 2 days with 40-minute sections. On the introduction day, three solar power articles will be read to set up a Socratic Seminar dialogue on Day 2. A teacher will need to read the articles. The articles investigate the pros and...

+
-
More Details Less Details
Learning Goal(s):
Students will read at least three articles discussing solar power generation, and the social, cultural, and economic implications of sustainable solar energyStudents will discuss social, cultural, and economic implications of sustainable solar energy in a Socratic Seminar format.
Author:
Tom Wolverton
Estimated Activity Length:
2 hours
Wadsworth OH thumbnail

Let’s Get Cooking!

Grades:
4-5
Lesson Number:
10
Description:

The purpose of this lesson is to provide students with a hands-on experience using the sun to cook cornbread or cookies. Students will also learn to use an infrared thermometer. There is also an optional extension for the class or individual students to...

+
-
More Details Less Details
Learning Goal(s):
At the end of this lesson students will be able to: • Follow and prepare a recipe for cookies. • Learn to take and record oven temperature every 30 minutes using an infrared thermometer. • Evaluate the three ovens with a pros and cons list for each one after cooking. • Write one or two of their own questions. • Make suggestions for design changes.
Author:
Lisa Morgan
Other Subjects Covered:
Estimated Activity Length:
3 hours

Cost Effective Solar Cells: Construction Progress and Obstacles

Grades:
9-12
Lesson Number:
13
Description:

This lesson is designed to be completed in one 80-minute section. The teacher will facilitate 3-4 groups as they share their construction progress and obstacles. Students will share individual results in a fishbowl setting and will participate in...

+
-
More Details Less Details

Cost Effective Solar Cells: Unique Solar Cell Engineering Report

Grades:
9-12
Lesson Number:
14
Description:

This lesson is designed to be completed in three 80-minute sections. The teacher will have students write their engineering reports with the following sections: Introduction (taken from Lesson #10), Design (incorporating the model from Lesson #10),...

+
-
More Details Less Details
Learning Goal(s):
Students will format solar cell data into tables and graphsStudents will draw conclusions based on testing dataStudents will construct an engineering report in a research poster format
Author:
Tom Wolverton
Estimated Activity Length:
4 hours
Thermal Convection

Where Does Energy Go?

Grades:
3-8
Lesson Number:
2
Description:

This lesson consists of six demonstration activities that show examples of ways in which water and air absorb heat to transfer energy from one place to another. These demonstration activities act as unique phenomena in which students can generate questions...

+
-
More Details Less Details
Learning Goal(s):
Students will understand that hot air risesStudents will understand why hot water and hot air rise and cold air and cold water sink.Students will learn that wind is produced by warm air rising and cold air sinking.Students will learn that the energy of moving hot air can be converted into other forms of energy.Students will understand that energy from the sun can be converted into heat.Students will discuss the effects of the chimney stack phenomenon.
Author:
Lisa Morgan
Estimated Activity Length:
5 hours
Wave Attenuator

Building a Tidal Wave Attenuator

Grades:
6-12
Lesson Number:
2
Description:

This lesson is designed to build upon investigations of electromagnetic energy by applying these phenomena to transfer the kinetic energy moving in waves to electricity by building a wave attenuator.

+
-
More Details Less Details
Learning Goal(s):
1. Students will describe and model the energy transfer and transformation in a wave attenuator. 2. Students will build a wave attenuator using a diagram and selected materials. 3. Students will test the model wave attenuator they built.
Author:
Tabatha Roderick
Estimated Activity Length:
2 hours
Car Charger Schematic

Activities and Assessment of Vocab and Units

Grades:
7-12
Unit:
Lesson Number:
2
Description:

This lesson is intended as a way to check for student understanding regarding the content presented in the previous lesson of this unit. The assessment takes place in two parts: a written assessment of content-related vocabulary and concepts as well as a...

+
-
More Details Less Details
Learning Goal(s):
Students will be able to define voltage, current, power and energy as it relates to electricity.Students will be able to define electricity and have the units for all the above terms in their Journals.Students will be able to set up multimeters for voltage and current and will be assessed on this.
Author:
Brett McFarland
Relevant NGSS PE:
Estimated Activity Length:
2 hours
Compost Heater

Compost Bioreactor Design

Grades:
7-12
Lesson Number:
2
Description:

Solar energy is available when the sun shines but energy can be supplemented at night by the release of energy during the composting of organic waste. In this activity, we will experiment with the feasibility of harnessing thermal energy to heat water with...

+
-
More Details Less Details
Learning Goal(s):
1. Students will research the science of composting and proper maintenance methods to build their own bioreactor. 2. Students will research the proper composition of compost for maximum heat production. 3. Students will transfer the thermal energy in compost to a container of water heat water with by placing a vessel in the middle of the active compost/bioreactor.
Author:
Tami Church
Estimated Activity Length:
2 hours