Solar Mobile

Solar Mobile Design Challenge - Construction

Grades:
6-8
Learning Goal(s):
Students brainstorm ideas and share with their group.Students draw and label Solar Mobile designs in Engineering Notebooks. Students research an aircraft to trace (if this was not accomplished in the Center of Gravity lesson) and trace the aircraft outline onto foam board. Students construct a solar circuit to power motors and propellers on a foam board aircraft and test multiple times before adding to the solar mobile stand. Students construct solar mobile stand and add their aircraft to a dowel attached to the central hub. Students work with a partner to balance each aircraft onto the mobile. Students test the mobile speed outside (depending on weather) and compare to speed under indoor light stands. After initial testing, students redesign circuits or mobile construction to optimize design. Students use hand-held devices to film their moving Mobiles to judge the machine’s speed. Students demonstrate how their Solar Mobile works and justify in writing why their mobile should be chosen for the Children’s Technology Museum. 
+
-
More Details Less Details
Solar Mobile

Exploring Center of Gravity

Grades:
6-8
Energy Content:
Learning Goal(s):
Students will observe a discrepant event and write down questions about what they observed. Students will participate in a variety of activities using a meter stick in order to experience and learn about center of gravity.Students will find the center of gravity of an irregular shaped paper object by using a plumb line. Students will apply the concept of Center of Gravity and find the center of their solar aircraft that is to be used on their solar mobile. 
+
-
More Details Less Details
Lesson Number:
3
Author:
Kristy Schneider
Other Subjects Covered:
Estimated Activity Length:
2 hours
Solar Mobile

Introducing the Solar Mobile Design Challenge

Grades:
6-8
Learning Goal(s):
Students will be introduced to solar aircraft. Students will form and write questions about solar aircraft into their Engineering Notebooks setting the stage for future questions.Students will be introduced to a room-sized solar mobile and add additional questions to their engineering notebook.Students will be introduced to the engineering design scenario. 
+
-
More Details Less Details
Lesson Number:
1
NGSS Science and Engineering Practices:
Author:
Kristy Schneider
Other Subjects Covered:
Estimated Activity Length:
1 hour
Solar Mobile

Solar Mobile Design Challenge Unit Plan

Grades:
6-8
Learning Goal(s):
Students will design circuits using various solar panels in order to power motors with propellers. Students will learn about solar energy transfer in order to power the motors on their solar aircraft.Students will research an aircraft and draw an outline of the aircraft onto foam board. Students will explore the concept of center of gravity. Students will test the efficiency of various light sources (incandescent, fluorescent, LED, halogen) for usage by a PV cell.Students will use their prior testing results and knowledge to engineer a solar-powered mobile. Students will work to transfer the most energy from the solar panels considering all the tested variables in order to power the fastest, most efficient mobile.Students will demonstrate and explain why their solar mobile should be chosen for the solar mobile display in the children’s museum. 
+
-
More Details Less Details
Design a 50 Year Energy Plan

How Do We Evaluate Energy Sources?

Grades:
9-12
Learning Goal(s):
1. Students will develop models of the interaction between atmospheric composition and surface temperature using simple diagrams.2. Students will reflect on the impact of energy sources and power production on the environment. 
+
-
More Details Less Details
Lesson Number:
5
Author:
Bradford Hill
Other Subjects Covered:
Estimated Activity Length:
0 sec
Design a 50 Year Energy Plan

Scaling up to Power Production: Let’s Engineer a Wind Turbine

Grades:
9-12
Learning Goal(s):
1. Design, build, and refine a wind turbine in order to effectively and efficiently convert motion into mechanical energy and then into electrical energy 
+
-
More Details Less Details
Design a 50 Year Energy Plan

Diving into the Physics of Motors and Generators

Grades:
9-12
Learning Goal(s):
1. Through hands-on exploration, create a working speaker for a cellphone. 2. Use the creation of a speaker to observe as a model for the process of generating electrical current in a simple generator/motor. 
+
-
More Details Less Details
Design a 50 Year Energy Plan

50 Year Energy Plan - Unit Plan

Grades:
9-12
Learning Goal(s):
Explore causes and effects of climate change as related to energy production. Develop a working understanding of varying stakeholder perspectives on the causes and effects of climate change. Through hands-on exploration, build a working speaker that can connect to a cellphone. Use DIY speakers as a model to observe the process of producing electrical currents with a simple generator. Design, build and refine a wind turbine to efficiently convert mechanical energy into electrical energy. Design, build and refine a system that is the most effective at converting the sunlight into electrical energy. Students develop models to study the relationship between the Earth’s atmospheric composition and the Earth’s surface temperatures using simple diagrams. Students reflect on the impact of energy sources and power production on the environment. Students utilize their knowledge of how energy generation processes impacts the environment to inform how and why they develop a 50-year Energy Plan for their local community. 
+
-
More Details Less Details
Dye in Water

Developing a Model of Thermal Energy, Atoms, and Molecules

Grades:
6-8
Learning Goal(s):
Students will develop a model through collaborative inquiry to explain thermal kinetic energy and predict the outcome when heat is added to a substance. Students will build argumentation from evidence skills through collaborative sense-making and gallery walk presentations. Students will develop a model of atomic and molecular structures.  
+
-
More Details Less Details

Pages