Design a 50 Year Energy Plan

50 Year Energy Plan - Unit Plan

Grades:
9-12
Description:

Throughout this creative, hands-on Unit, students are challenged to scale up every Disciplinary Core Idea and Science & Engineering Practice they’ve learned - from simple electricity generation, to building their own stereo speakers and DIY electric...

+
-
More Details Less Details
Learning Goal(s):
Explore causes and effects of climate change as related to energy production. Develop a working understanding of varying stakeholder perspectives on the causes and effects of climate change. Through hands-on exploration, build a working speaker that can connect to a cellphone. Use DIY speakers as a model to observe the process of producing electrical currents with a simple generator. Design, build and refine a wind turbine to efficiently convert mechanical energy into electrical energy. Design, build and refine a system that is the most effective at converting the sunlight into electrical energy. Students develop models to study the relationship between the Earth’s atmospheric composition and the Earth’s surface temperatures using simple diagrams. Students reflect on the impact of energy sources and power production on the environment. Students utilize their knowledge of how energy generation processes impacts the environment to inform how and why they develop a 50-year Energy Plan for their local community. 
Author:
Bradford Hill
Estimated Activity Length:
0 sec
Hot Pack

Unit Plan - Chemical Differences in Emergency Energy Sources

Grades:
7-8
Description:

Students develop atomic and molecular models of energy resources, analyze combustion of various fuels and build circuits with Photovolatic (PV) modules to evaluate and suggest revisions to a disaster preparedness supply list. They then research and...

+
-
More Details Less Details
Learning Goal(s):
To build empathy for people in emergency situations and an understanding of how access to energy resources can increase one’s safety, health, and comfort. To understand the nature of a variety of energy needs and how different applications have different optimal solutions. To develop models to explain the molecular and extended structures of energy resources, including how the resources change when energy is generated (Electron movement in PV cells, combustion reactions in fuel). To understand that the properties of substances depends upon the atomic / molecular structure, which changes with chemical reactions. To build a circuit that includes a solar module and measure the voltage and current. To gather and evaluate information to describe the impact on society of converting natural resources into PV cells. To design, build and test a device that uses a chemical reaction to generate or absorb thermal energy. Evaluate and revise a plan for the energy resources one should store to prepare for a natural disaster. 
Author:
Melody Childers
Estimated Activity Length:
0 sec
Outdoor Circuitry

Engineering with Renewable Energy: Solar Water Pumping

Grades:
4-5
Description:

Students will learn that energy from a renewable resource can be converted to electrical energy to do work by engineering a water pump system powered by the sun. They will compare the volume of water pumped by different designs and graph data collected and...

+
-
More Details Less Details
Learning Goal(s):
The students will be able to learn what a solar cell looks like and how light energy triggers the cell to release negative charges to move toward the positive side, creating power as it moves from one side to the other. Students will be able to arrange four panels into the correct order to create power for an object and interact with a 3D model of a module to understand how the electricity to power the fan is created. The students will be able to experiment with solar panels (angle, direction) to power a small fan/LED light/circuit board. Students will be able to identify the best position/angle for maximum power. Students will apply scientific ideas to design and test a solar powered water pump that moves water at the fastest rate. Students will experiment and build understanding of parallel and series wiring and how energy moves in these circuits.
Author:
Jamie Repasky
Estimated Activity Length:
2 hours
Solar Tracker

Solar Tracker Challenge

Grades:
5-7
Description:

Students will build a simple circuit that can be used to track a light source. This circuit will be used as a springboard for discussion into the engineering design process, solar tracking, and basic electricity and circuits. The simple solar tracker...

+
-
More Details Less Details
Learning Goal(s):
Students observe and replicate a simple solar tracker; learn basic electric circuits and terminology; reflect on possible improvements for solar tracker; and reflect on how the engineering design process is used daily.
NGSS Science and Engineering Practices:
Author:
Jamie Repasky
Estimated Activity Length:
1 hour
SODIS_UV Treament

Solar and SODIS: Creating Clean Water for the World

Grades:
5-8
Description:

According to Nobel Laureate Richard Smalley, the number one and two challenges for humanity are energy and clean water. This classroom activity will introduce students to a low cost, renewable technique that connects these two issues. During the activity,...

+
-
More Details Less Details
Learning Goal(s):
Students will be introduced to the range of microbes in the environment, understand the risks of “dirty water” and be able to explain how energy from the sun can purify water through the SODIS technique.
Author:
Jamie Repasky
Estimated Activity Length:
1 hour
Photovoltaic Module

How a Solar Cell Works: Photon Simulation

Grades:
4-8
Description:

The purpose of this activity is to simulate the movement of electrons at the p-n junction to create an electrical current. Students will play a modified game of musical chairs, where teams will compete against each other while creating their own...

+
-
More Details Less Details
Learning Goal(s):
To understand how a solar cell operates on the atomic level, through a simulation experience
Pedagogy & Practice:
NGSS Science and Engineering Practices:
Author:
Erin Sturtz
Other Subjects Covered:
Estimated Activity Length:
50 min
Sphero SPRK+

Solar SPRK+ Unit Overview

Grades:
6-8
Unit:
Description:

This unit incorporates basic programming knowledge and solar energy into an engineering design challenge using Sphero SPRK+ robots. The theme for this challenge centers on the idea of Mars rovers, and the challenges faced in space exploration, specifically...

+
-
More Details Less Details
Learning Goal(s):
Students will develop tools to use in the Engineering Design Process.Students will learn drag and drop programming with Sphero Edu (formerly Lightning Lab).Students will determine how series and parallel circuits affect voltage and current.Students will understand how to use photovoltaic sources to charge a SPRK+.Students will design a chariot to carry a photovoltaic power source for a SPRK+.Students will learn to program a SPRK+ ball and chariot through a maze.
Author:
Deb Frankel
Estimated Activity Length:
10 hours
Sources of Energy

Energy Review: Practical and Technical Perspectives—What is Energy?

Grades:
4-8
Description:

Students will take a short field trip around the school to identify different types of energy.

+
-
More Details Less Details
Learning Goal(s):
To access prior knowledge about different forms of energy
NGSS Science and Engineering Practices:
Author:
Erin Sturtz
Estimated Activity Length:
50 min
Source:
Washington Green Schools
Published:
2021
Last Updated:
2021
Intended Grade Level:
3-5,
MS
Description:

Washington Green Schools guides and supports students and school communities to be leaders for a healthy environment. As part of their efforts to promote sustainable schools, they have developed a series of games and activities to help students understand energy use in their school and engage in conversations about how to reduce their energy use and clean up their sources of energy.

Pages