Solar Mobile

Solar Mobile Design Challenge Unit Plan

Grades:
6-8
Description:

This unit involves students learning about transferring solar energy to small motors, exploring the center of gravity and testing light sources (including the sun). The culminating engineering design project gives students the chance to pull...

+
-
More Details Less Details
Learning Goal(s):
Students will design circuits using various solar panels in order to power motors with propellers. Students will learn about solar energy transfer in order to power the motors on their solar aircraft.Students will research an aircraft and draw an outline of the aircraft onto foam board. Students will explore the concept of center of gravity. Students will test the efficiency of various light sources (incandescent, fluorescent, LED, halogen) for usage by a PV cell.Students will use their prior testing results and knowledge to engineer a solar-powered mobile. Students will work to transfer the most energy from the solar panels considering all the tested variables in order to power the fastest, most efficient mobile.Students will demonstrate and explain why their solar mobile should be chosen for the solar mobile display in the children’s museum. 
Author:
Kristy Schneider
Estimated Activity Length:
0 sec
Source:
Washington Green Schools
Published:
2021
Last Updated:
2021
Intended Grade Level:
3-5,
MS
Description:

Washington Green Schools guides and supports students and school communities to be leaders for a healthy environment. As part of their efforts to promote sustainable schools, they have developed a series of games and activities to help students understand energy use in their school and engage in conversations about how to reduce their energy use and clean up their sources of energy.

Source:
Institute for Science and Math Education
Published:
2016
Last Updated:
2020
Intended Grade Level:
PreK-2,
3-5,
MS,
HS,
OST
Resource File(s):
Description:

A fantastic one-page guide for educators to navigate different activities to promote collaborative science learning, based on the need/purpose andn timing of the activity. Includes stuent- and teacher led activities across a range of leanring styles. 

Location:
Source:
TERC
Published:
2012
Last Updated:
2020
Intended Grade Level:
PreK-2,
3-5,
MS,
HS,
OST
Resource File(s):
Description:

A simple reference for all student ages of talk moves and activities that educators can use to facilitate productive academic dialogue around new topics.

Location:
Source:
Allegheny Intermediate Unit
Published:
2020
Last Updated:
2020
Intended Grade Level:
PreK-2,
3-5
Description:

These STEM Packs for grades PreK-5 use picture books to engage students in a series of 40 minute pre-designed STEM lessons with associated materials. Many kits are reusable or easily refurbishable with basic materials. The topics are derived explicitly from NGSS and are aligned with the standards across multiple Disciplinary Core Ideas. CE and AIU co-developed two energy-focused Storytime STEM Packs, including "Boy Who Harnessed the Wind" investigation and engineering design and "My Papi has a Motorcycle" energy use exploration.

Location:

Solar Car Engineering Challenge Unit

Grades:
6-8
Description:

Students will build a solar car using instructions provided (Sol Run). They will take measurements of their car and then test to see how fast it can travel a 3m track. After students obtain their initial results they will research how to improve the car’s...

+
-
More Details Less Details
Learning Goal(s):
After the completion of this lesson students will be able to: • Describe how solar cars work • Accurately record and measure data • Use data to propose changes to experimental designs • Research a topic • Complete a full engineering assignment • Explain pros/cons of various prototypes • Work successfully within a group to accomplish a specific task • Brainstorm various ideas
Author:
Todd Freiboth
Estimated Activity Length:
40 min
Source:
KidWind
Published:
2020
Last Updated:
2020
Intended Grade Level:
3-5,
MS,
HS,
OST
Description:

Two really fantastic and engaging engineering challenges held both nationally and online for grades 4-12: Wind Engineering and Solar Structures. Educators and students are provided with scaffolded lessons for engaging in the fundmanetal content of the challenge, as well as guidance for how to prepare and structure the challenge. Challenges can be run at the class, school, district, or regional level and the in-person challenge includes regional and national competitions. Kidwind also provide professional development opportunities for educators.

Location:
Source:
Generation 180
Published:
2020
Last Updated:
2020
Intended Grade Level:
3-5,
MS,
HS,
OST
Description:

Generation 180 is a nonprofi working to inspire and equip people to take action on clean energy. The site includes a wealth of resources for engaging student's in exploring how they use energy, understanding how energy decisions are made, and providing them with tools so they can take big or small actions to promote clean energy locally. Two features include the Energy Challenge (to organize class/local challenges) and the Boot Camp virtual course. The site also has reports on school solar, with success stories, trends, and guide for including solar in your school.

Location:
Design a 50 Year Energy Plan

50 Year Energy Plan - Unit Plan

Grades:
9-12
Description:

Throughout this creative, hands-on Unit, students are challenged to scale up every Disciplinary Core Idea and Science & Engineering Practice they’ve learned - from simple electricity generation, to building their own stereo speakers and DIY electric...

+
-
More Details Less Details
Learning Goal(s):
Explore causes and effects of climate change as related to energy production. Develop a working understanding of varying stakeholder perspectives on the causes and effects of climate change. Through hands-on exploration, build a working speaker that can connect to a cellphone. Use DIY speakers as a model to observe the process of producing electrical currents with a simple generator. Design, build and refine a wind turbine to efficiently convert mechanical energy into electrical energy. Design, build and refine a system that is the most effective at converting the sunlight into electrical energy. Students develop models to study the relationship between the Earth’s atmospheric composition and the Earth’s surface temperatures using simple diagrams. Students reflect on the impact of energy sources and power production on the environment. Students utilize their knowledge of how energy generation processes impacts the environment to inform how and why they develop a 50-year Energy Plan for their local community. 
Author:
Bradford Hill
Estimated Activity Length:
0 sec

Pages