Design a 50 Year Energy Plan

What is Our Plan?

Grades:
9-12
Learning Goal(s):
1. Students utilize their knowledge of energy’s impact on global systems as well as the process of energy generation in order to inform their development of a 50-year Energy Plan divided into decades. 
+
-
More Details Less Details
Design a 50 Year Energy Plan

Scaling up to Power Production: Let’s Engineer a Wind Turbine

Grades:
9-12
Learning Goal(s):
1. Design, build, and refine a wind turbine in order to effectively and efficiently convert motion into mechanical energy and then into electrical energy 
+
-
More Details Less Details
Design a 50 Year Energy Plan

50 Year Energy Plan - Unit Plan

Grades:
9-12
Learning Goal(s):
Explore causes and effects of climate change as related to energy production. Develop a working understanding of varying stakeholder perspectives on the causes and effects of climate change. Through hands-on exploration, build a working speaker that can connect to a cellphone. Use DIY speakers as a model to observe the process of producing electrical currents with a simple generator. Design, build and refine a wind turbine to efficiently convert mechanical energy into electrical energy. Design, build and refine a system that is the most effective at converting the sunlight into electrical energy. Students develop models to study the relationship between the Earth’s atmospheric composition and the Earth’s surface temperatures using simple diagrams. Students reflect on the impact of energy sources and power production on the environment. Students utilize their knowledge of how energy generation processes impacts the environment to inform how and why they develop a 50-year Energy Plan for their local community. 
+
-
More Details Less Details
Hot Pack

Engineering a Hot Pack

Grades:
7-8
Learning Goal(s):
Students will collect data to characterize a chemical reaction Students will identify the criteria and constraints of an engineering challenge. Students will design and build a hot pack that meets the criteria of the project. Students will collect data to support their proposed design. 
+
-
More Details Less Details
Dye in Water

Developing a Model of Thermal Energy, Atoms, and Molecules

Grades:
6-8
Learning Goal(s):
Students will develop a model through collaborative inquiry to explain thermal kinetic energy and predict the outcome when heat is added to a substance. Students will build argumentation from evidence skills through collaborative sense-making and gallery walk presentations. Students will develop a model of atomic and molecular structures.  
+
-
More Details Less Details
Hot Pack

Unit Plan - Chemical Differences in Emergency Energy Sources

Grades:
7-8
Learning Goal(s):
To build empathy for people in emergency situations and an understanding of how access to energy resources can increase one’s safety, health, and comfort. To understand the nature of a variety of energy needs and how different applications have different optimal solutions. To develop models to explain the molecular and extended structures of energy resources, including how the resources change when energy is generated (Electron movement in PV cells, combustion reactions in fuel). To understand that the properties of substances depends upon the atomic / molecular structure, which changes with chemical reactions. To build a circuit that includes a solar module and measure the voltage and current. To gather and evaluate information to describe the impact on society of converting natural resources into PV cells. To design, build and test a device that uses a chemical reaction to generate or absorb thermal energy. Evaluate and revise a plan for the energy resources one should store to prepare for a natural disaster. 
+
-
More Details Less Details
Car Charger Schematic

Phone Charger Efficiency

Grades:
7-12
Learning Goal(s):
1. Students will use multimeters to measure voltage and current in circuits. 2. Students will use collected data and be able to make power calculations from this data. 3. Students will also be able to calculate efficiency from their power calculations. 4. Students will be able to compare efficiencies in order to identify the circuit that is most efficient. 5. Students will be able to make circuits from a diagram and vice versa.
+
-
More Details Less Details
Arduino Angler Design

Illuminate Me: Merging Conductive Sewing, Technology, and Solar Power

Grades:
7-12
Learning Goal(s):
1. Students will design and sew a wearable circuit using conductive thread. 2. Students will program a wearable microcontroller to light up garment with bright LEDs. 3. Students will incorporate solar power into a wearable garment project by recharging NiMH batteries for a renewable energy battery pack. 4. Students will apply knowledge of circuitry and energy transfer to maximize design.
+
-
More Details Less Details
Sun in Space

Our Place in Space: Cosmic Rays

Grades:
3-5
Learning Goal(s):
Students will learn how the sun affects their school by measuring the temperature at different locations around the building in the fall, winter, and spring. They will learn how to measure solar energy and look for trends in temperature and solar power over the year. These trends will then be used to investigate how energy reaches Earth from the Sun.
+
-
More Details Less Details

Pages