Solar Mobile

Solar Mobile Design Challenge - Construction

Grades:
6-8
Learning Goal(s):
Students brainstorm ideas and share with their group.Students draw and label Solar Mobile designs in Engineering Notebooks. Students research an aircraft to trace (if this was not accomplished in the Center of Gravity lesson) and trace the aircraft outline onto foam board. Students construct a solar circuit to power motors and propellers on a foam board aircraft and test multiple times before adding to the solar mobile stand. Students construct solar mobile stand and add their aircraft to a dowel attached to the central hub. Students work with a partner to balance each aircraft onto the mobile. Students test the mobile speed outside (depending on weather) and compare to speed under indoor light stands. After initial testing, students redesign circuits or mobile construction to optimize design. Students use hand-held devices to film their moving Mobiles to judge the machine’s speed. Students demonstrate how their Solar Mobile works and justify in writing why their mobile should be chosen for the Children’s Technology Museum. 
+
-
More Details Less Details
Solar Mobile

Light Source Efficiency: Exploring Irradiance

Grades:
6-8
Learning Goal(s):
Using a Vernier Pyranometer, students will measure electromagnetic radiation in watts per square meter (W/m2 ). Students will compare Sunlight irradiance with various indoor lighting options. Students will make a recommendation as to the optimum indoor lighting for powering solar panels. 
+
-
More Details Less Details
Solar Mobile

Exploring Center of Gravity

Grades:
6-8
Energy Content:
Learning Goal(s):
Students will observe a discrepant event and write down questions about what they observed. Students will participate in a variety of activities using a meter stick in order to experience and learn about center of gravity.Students will find the center of gravity of an irregular shaped paper object by using a plumb line. Students will apply the concept of Center of Gravity and find the center of their solar aircraft that is to be used on their solar mobile. 
+
-
More Details Less Details
Lesson Number:
3
Author:
Kristy Schneider
Other Subjects Covered:
Estimated Activity Length:
2 hours
Solar Mobile

Exploring Circuits and Optimum Power

Grades:
6-8
Learning Goal(s):
Students build series circuits using “grain of wheat bulb” and LEDs powered by various low voltage solar panels. Students build parallel circuits using grain of wheat and LED bulbs powered by various low voltage solar panels. Students demonstrate and draw the energy transfer using solar energy. Students draw a circuit diagram of their final optimal circuit. Students design an optimal circuit model that will be used in their final project. 
+
-
More Details Less Details
Solar Mobile

Introducing the Solar Mobile Design Challenge

Grades:
6-8
Learning Goal(s):
Students will be introduced to solar aircraft. Students will form and write questions about solar aircraft into their Engineering Notebooks setting the stage for future questions.Students will be introduced to a room-sized solar mobile and add additional questions to their engineering notebook.Students will be introduced to the engineering design scenario. 
+
-
More Details Less Details
Lesson Number:
1
NGSS Science and Engineering Practices:
Author:
Kristy Schneider
Other Subjects Covered:
Estimated Activity Length:
1 hour
Solar Mobile

Solar Mobile Design Challenge Unit Plan

Grades:
6-8
Learning Goal(s):
Students will design circuits using various solar panels in order to power motors with propellers. Students will learn about solar energy transfer in order to power the motors on their solar aircraft.Students will research an aircraft and draw an outline of the aircraft onto foam board. Students will explore the concept of center of gravity. Students will test the efficiency of various light sources (incandescent, fluorescent, LED, halogen) for usage by a PV cell.Students will use their prior testing results and knowledge to engineer a solar-powered mobile. Students will work to transfer the most energy from the solar panels considering all the tested variables in order to power the fastest, most efficient mobile.Students will demonstrate and explain why their solar mobile should be chosen for the solar mobile display in the children’s museum. 
+
-
More Details Less Details