Hot Pack

Unit Plan - Chemical Differences in Emergency Energy Sources

Grades:
7-8
Description:

Students develop atomic and molecular models of energy resources, analyze combustion of various fuels and build circuits with Photovolatic (PV) modules to evaluate and suggest revisions to a disaster preparedness supply list. They then research and...

+
-
More Details Less Details
Learning Goal(s):
To build empathy for people in emergency situations and an understanding of how access to energy resources can increase one’s safety, health, and comfort. To understand the nature of a variety of energy needs and how different applications have different optimal solutions. To develop models to explain the molecular and extended structures of energy resources, including how the resources change when energy is generated (Electron movement in PV cells, combustion reactions in fuel). To understand that the properties of substances depends upon the atomic / molecular structure, which changes with chemical reactions. To build a circuit that includes a solar module and measure the voltage and current. To gather and evaluate information to describe the impact on society of converting natural resources into PV cells. To design, build and test a device that uses a chemical reaction to generate or absorb thermal energy. Evaluate and revise a plan for the energy resources one should store to prepare for a natural disaster. 
Author:
Melody Childers
Estimated Activity Length:
0 sec
Lead Acid Battery

Solar Battery Charging

Grades:
7-12
Description:

Students will become familiar with circuits, cells, batteries, and photovoltaic cells, then plan, build, test, modify, and re-test a small solar battery charger designed to maintain batteries from a particular device.

+
-
More Details Less Details
Learning Goal(s):
Students will build series, parallel, and parallel series circuits from a schematic diagram. Students will master the basic concept of battery charging. Students will be able to plan and build solar battery chargers for a given battery system. Intermediate students will calculate time to charge a depleted battery to its full capacity given specifications of a solar module. Students will be able to explain how a solar cell works with diagrams and words. Students will use a digital multi-meter to measure voltage, current, resistance, and diode polarity.
Author:
Luke Robbins
Estimated Activity Length:
9 hours
Solar Rooftop

Introduction to the Photovoltaic Effect

Grades:
9-12
Lesson Number:
1
Description:

This lesson begins with basic chemistry with regards to atomic structure. The lesson then moves to understanding the special properties of silicon as a photoelectric semi- conductor. Building on this, the basic structure of photovoltaic solar cells is...

+
-
More Details Less Details
Learning Goal(s):
Students will be able to describe the basic structure of a photovoltaic solar cell. Students will be able to outline or summarize how solar cells produce electricity. Students will be able to explain why silicon, boron and phosphorous are most often used to construct solar cells.
Pedagogy & Practice:
NGSS Science and Engineering Practices:
Author:
Clayton Hudiburg
Other Subjects Covered:
Estimated Activity Length:
1 hour
Dye in Water

Developing a Model of Thermal Energy, Atoms, and Molecules

Grades:
6-8
Lesson Number:
2
Description:

Through a series of exploration and inquiry activities, students will explain kinetic molecular theory, atomic, and molecular structures. Students will be challenged to gradually increase the precision of their explanation of molecular-level structures...

+
-
More Details Less Details
Learning Goal(s):
Students will develop a model through collaborative inquiry to explain thermal kinetic energy and predict the outcome when heat is added to a substance. Students will build argumentation from evidence skills through collaborative sense-making and gallery walk presentations. Students will develop a model of atomic and molecular structures.  
Author:
Melody Childers
Relevant NGSS PE:
Estimated Activity Length:
9 hours