

Vocabulary Wall

Calendar of Learning Sequence

Day	What did we do?	How does it connect?
1		
2		
3		
4		
5		
6		
7		
8		

9	
10	
11	
12	
13	
14	
15	
16	

Voices of the World (inspired by Bill Bigelow with <u>Rethinking Schools</u>)

Who did you meet?	Where are they from?	What is most important to them?	Why? What else? (other important details?)
You:			
Find someone who lives on a different continent than you do. Name:			
Find someone who believes that he or she might personally benefit from climate change. Name:			
Find someone who believes that they are harmed by climate change. Name:			
Find someone who is affected by climate change in a way that is similar to how you're affected.	E.S.S.		
Find someone whose story involves a connection between water and climate change. Name:			
Find someone who has an idea about what should be done to deal with global warming. Name:			
Find someone who is from Oregon. Name:			

Find an Oregon politician. Name:		

Background Research on Power Production

Each of the energy strategies below is proven to be able to help meet our energy needs on a large scale. When thinking about our energy needs, there is no perfect solution and each of the energy strategy comes with trade-offs. Go to <u>studentenergy.org/map</u> and with your group, fill out the chart below detailing the energy strategies and their respective trade-offs. For this activity you will need access to the internet.

Energy		Criterion #1:	Criterion #2:	Criterion #3:
Source	Description			
Hydro Power				
Coal				
Natural Gas				

Nuclear				
Biomass				
Energy Source	Description	Criterion #1:	Criterion #2:	Criterion #3:
Wind				
Geothermal				
Solar Cells also called Photovoltaics (PV) + Solar Thermal				

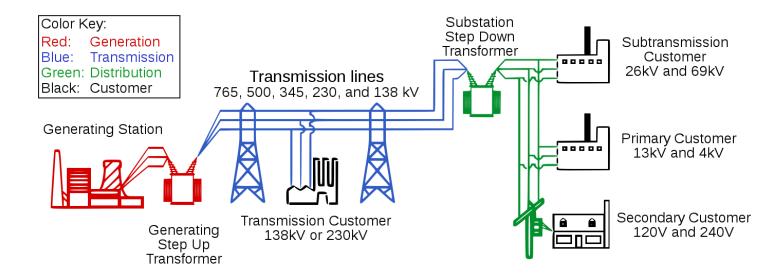
Wave / Tidal Power		
Smart Grid Technology		
Energy Storage		

The Basic Physics of Electric Power

Experi	ence	(Phenomenon)
Water Bucket A	nalogy	Real Circuit
Word D	efinition	

Mathematical			
Equation 1	Equation 2		

	Equation 3	
Analogy	•	
Mathematical		


Questions

1: What happens to the power if the current is doubled? Use the analogy to support your answer.	2: What happens to the power if the voltage is doubled? Use the analogy to support your answer.
3: What happens to the power if batteries are placed in series (back to back)?	4: What happens to the power if batteries are placed in parallel (side to side)?

Placeholder for Building, Exploring, and Discovering how Speakers Work

Placeholder for Building, Exploring, and Discovering how Electric Generators Work

Getting Big: Large Scale Power Production

Notes about this Process:

Challenges we face:

Engineering a Wind Turbine

Request for Proposal: Criteria, Constraints, and Costs

Beaverton Public Works: Cooper Mountain Nature Park Wind Turbine Project

Request for Proposal:

Beaverton Public Works is accepting bids, until ______, to refine the blade design of a wind turbine that increases power production for the Cooper Mountain Nature House within Cooper Mountain Nature Park. The wind turbine currently produces only _____ Watts (W) but to reach their energy goal of net neutral the wind turbine must generate at least _____ W. Additional production is desirable as a future cost saving measure. Beaverton Public Works Engineers did an initial investigation of the site before the original installation, in which they measured a nearly constant wind speed of 8 (± 2) m/s from the west at the site of the wind turbine during operation

times. Additionally, Beaverton Public Works Engineers have measured maximum wind gusts at this location of 14 (± 2) m/s from the southwest. To justify the redesign and ensure its success the design recommendation report will need to display test data for the energy output for at least 4 different blade design parameters. The Beaverton City Council has approved \$75,000 for the completed project and prefers that materials, as much as possible, be sourced locally to reduce the environmental impact of shipping materials long distances.

Request for Data:

Teachers' Data Co-op needs quality data on how various blade designs affect the max energy output of a wind turbine. Teachers' Data Co-op has defined max power output as the ability of the wind turbine to consistently produce the power for 5 continuous seconds. To simulate the constant wind speed found at the build site, data must be collected by placing the wind turbine 30 cm from the wind source which maintains a constant wind speed of 8 m/s. Teachers' Data Co-op has an open contract to pay out \$40,000 for each quality data set and graph that helps to determine the effectiveness of different blade designs.

Paid Advertisement Teachers' Data Co-op is your source for data on wind turbine blade performance. We are your one stop shop for purchasing data on how different wind turbine blades will perform under different conditions. Contact us through our local representative: ______@ _____. Prices may vary but start as low as just \$5,000. **Constraints:** Circle 4 constraints in the Request for Proposal

Criteria: Draw a rectangle around 1 criterion

Brainstorm blade-related parameters that could affect the power output of a wind turbine 1. 5.

3.

4.

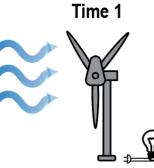
2.

Wild Guess Design:

Figure 1: Material Costs

Tower (Base Station)	Total Cost of Tower (\$)
1	30,000

Blade Angle (degrees)	Additional Cost to Blade for the Angle (\$)
20	0
40	0
60	0
90	0


Number of Blade Holders (# of Pegs)	Total Cost of Blade Holders (\$)
2	10,000
3	15,000
4	20,000
6	30,000

Total Area of Paper on all Blades (cm²)	Total Cost of Paper on Blades (\$)
40	20,000
60	30,000
80	40,000
100	50,000

Wind Turbine Report to Beaverton City Council

The Basic Energy Flow in a Wind Turbine:

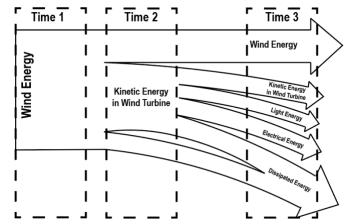
The image below shows a wind turbine in action. Fill in the energy bar charts below.

Generato

_						
-		F .	 	-	-	-
-		┝᠂	 	-	-	-
-		Ļ.	 	_	_	_
_		L.	 	_	_	_
		Г	 	_	_	_
-		ŀ١	 	-	-	-
-		ŀ٠	 	-	-	-
		L.	 	_	_	_

Generato

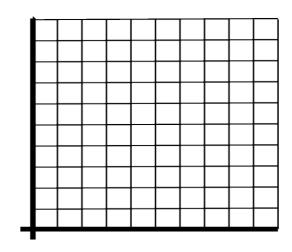
Generato


Advanced Energy Analysis of a Wind Turbine with Sankey Diagrams:

Modify the diagram to the right as follows:

- 1. Place a [square] around the energy initially captured by the wind turbine
- 2. Place a {bracket} around the useful energy coming out of the wind turbine.
- 3. Estimate both the overall efficiency and the internal efficiency of the wind turbine.
- 4. Modify the arrows (with a + or -) to show how each overall and internal efficiency could be increased.

The Basic Physics of How a Wind Turbine Works:


Provide a written description of the basic physics of a wind turbine. Use key terminology: wind, wind turbine, energy, energy transfer, energy transformation, kinetic energy, electric energy, light energy, dissipated energy, and overall efficiency.

Research Results: Data Table & Graphs

Research Question:_____

Title:	
Column heading:	Column heading:

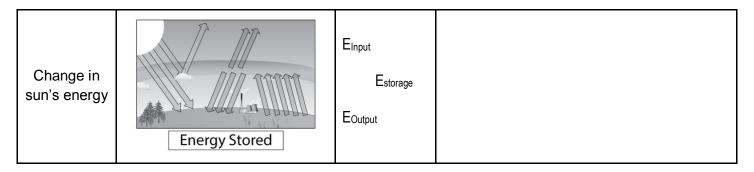
Expense Report	Income (\$)	Expense (\$)		
		Initial Funding		
	m Sale of Data			
Cost of acquiring other Data				
Parts	Specification for Parts (Size/Number/Angle)	Price Per Piece		
Tower				
Axel to hold Paper Blade				
Paper for Blade				
Angle of Blades				
	Grand Total Cost for Wind Turbine			
	Remaining Funds			

Final Design and Performance Results

Claim: I claim the optimal design is ...

Evid	Reasoning about Design Decision		
Graph	Graph Explained in Words		
	My first piece of evidence is that shows	Since my design recommendation is	
	My second piece of evidence is which demonstrates	Considering this and, I recommend building a wind turbine with	
	Graph 3 indicates that	Therefore the optimal design should have	

	My final piece of evidence is which reveals a pattern between	Considering this pattern and the budget I recommend
--	--	---


Placeholder for Climate Science Sankey Diagram

Climate Science - Continued

1. Complete the table below

- Warming Explain how the in words and energy trans	e climate warms I by drawing	$\frac{Energy_{in}}{Unit Time} Energy_{Stored in Earth System} \qquad \frac{Energy_{out}}{Unit Time}$ How does the Earth's climate warm?			
- Cooling Climate - Explain how the climate cools in words and by drawing energy transfers arrow.		Unit Time	Energy _{Stored} in Earth System $\frac{Energy_{on}}{Unit Tim}$ arth's climate cool?		
Energy Storage and Redistribution within the Earth System					
2. Complete the tal Factor		ey Diagram	Enorgy Analysia	K	lotes
Facioi	Saliki	ey Diagram	Energy Analysis		NOLES
Atmospheric Composition	Energy Stored		Elnput Estorage EOutput		
Volcanic Activity	Energy Stored		Einput Estorage EOutput		
Circulation of the Oceans	Sketcl	n a Picture	Einput Estorage EOutput		
Factor	Sank	ey Diagram	Energy Analysis	N	lotes

Deforestation	Energy Stored	Elnput Estorage EOutput	
Earth's orbit and the axis	Energy Stored	Einput Estorage EOutput	
Circulation of the Atmosphere	Sketch a Picture	Elnput Estorage EOutput	
Glaciation	Energy Stored	Elnput Estorage EOutput	
Human activities	Energy Stored	Elnput Estorage EOutput	

Placeholder for 6CER