Keeping it Cool With Solar: Build Time

Grades:
K-2
Lesson Number:
4
Description:

This lesson is designed for one 30-minute session. Students build their structures based on their designs from Lesson 3. Students share evidence about ho w their structures affect the sunlight on the earth’s surface.

+
-
More Details Less Details
US DOE WInd Turbines

Variables Affecting Wind Turbine Power

Grades:
7-8
Lesson Number:
5
Description:

Now that students are familiar with how mechanical electricity generation works, they will build a wind turbine powered by a box fan. Different teams will test different turbine variables to see how the amount of electrical power is affected. After each...

+
-
More Details Less Details
Learning Goal(s):
• Students will be able to identify and explain at least three variables that affect the efficiency of wind turbines • Students will conduct a scientific investigation to determine which wind turbine configuration will generate the most power
Author:
Craig Marais
Estimated Activity Length:
4 hours

Analyze Data and Draw Conclusions

Grades:
4-6
Unit:
Lesson Number:
5
Description:

Students have performed the investigation and will now analyze their data. They will accomplish this through a journaling activity that requires them to use the data collected from the actual races. The will refer to sentence frames in order to make...

+
-
More Details Less Details
Learning Goal(s):
Students will determine how differences between solar cars affected their functionality. Students will make claims based off of quantitative and qualitative data. Students will engage in scientific talk based off of their own observations when constructing and testing solar cars. Students will complete a journaling activity that outlines their processes relating to making conclusions.
Author:
Carol Patrick
Other Subjects Covered:
Estimated Activity Length:
1 hour
Kidwind Small Water Pump

Making Observations and Recording Data for Solar Powered Water Pumping

Grades:
2-5
Lesson Number:
5
Description:

Students use a solar module and water pump to test how quickly one cup of water can be pumped.

+
-
More Details Less Details

Using Multiple Solar Modules

Grades:
3-5
Lesson Number:
5
Description:

Students first explore with 0.5 Volt solar cells to see whether adding cells to a circuit increases the amount of water pumped by a small pump. They are introduced to parallel and series wiring. They then design and carry out a formal experiment to test...

+
-
More Details Less Details
Learning Goal(s):
Students will apply scientific ideas to design and test a solar powered water pump that moves water at the fastest rate. Students will experiment and build understanding of parallel and series wiring and how energy moves in these circuits. Students will record data accurately into a table.
Author:
Leah Gorman
Relevant NGSS PE:
Estimated Activity Length:
3 hours
Hot Pack

Engineering a Hot Pack

Grades:
7-8
Lesson Number:
5
Description:

Through a series of inquiry activities, students will discover the properties of the chemical reaction of dissolving CaCl 2 in water, the effect of stirring, and of adding baking soda and sodium polyacrylate crystals. Once initial data is collected,...

+
-
More Details Less Details
Learning Goal(s):
Students will collect data to characterize a chemical reaction Students will identify the criteria and constraints of an engineering challenge. Students will design and build a hot pack that meets the criteria of the project. Students will collect data to support their proposed design. 
Author:
Melody Childers
Relevant NGSS PE:
Estimated Activity Length:
5 hours
Solar Charger Diagram

Photovoltaic Solutions "Shark-Tank Style"

Grades:
10-12
Lesson Number:
5
Description:

In this lesson, the students will take their knowledge gained in the previous activities to innovate design solutions that will allow PV technology to plan an increased role in the transportation sector. The challenge given to them is to design a BEV that...

+
-
More Details Less Details
Learning Goal(s):
1. Students will use data and mathematics to design a solution for using PV technology in the transportation sector. 2. Students will create a presentation with visuals and specs outlining their proposed solution. 3. Students will present and attempt to “sell” their products to a panel of judges.
Author:
Clayton Hudiburg
Estimated Activity Length:
5 hours
Car Charger Schematic

DC to AC to DC Efficiency

Grades:
7-12
Unit:
Lesson Number:
5
Description:

This is part of the Off the Grid Unit. This lesson will continue to deal with efficiency of USB charging devices, but this time we will be using an inverter in order to create AC voltage from a battery pack, and then use a standard AC charger (what you...

+
-
More Details Less Details
Learning Goal(s):
1. Students will use multimeters to measure voltage and current in circuits. 2. Students will use collected data and be able to make power calculations from this data. 3. Students will also be able to calculate efficiency from their power calculations. 4. Students will be able to compare efficiencies in order to identify the circuit that is most efficient. 5. Students will be able to make circuits from a diagram and vice versa. 6. Students will know what an inverter is and what it does.
Pedagogy & Practice:
Author:
Brett McFarland
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
3 hours

Cost Effective Solar Cells: Copper Oxide Solar Cell Construction and Testing

Grades:
9-12
Lesson Number:
5
Description:

This lesson is designed to be completed in one 80-minute section, but can be done in two 40-minute sections. The teacher will facilitate student construction of copper oxide plates with electric burners or hot plates. Teachers will guide students in...

+
-
More Details Less Details
Learning Goal(s):
Students will construct an oxidized copper sheet solar cell Students will test an oxidized copper sheet solar cell for voltage and current
Author:
Tom Wolverton
Estimated Activity Length:
2 hours

Part 2 - Lesson 2: Wind Energy

Grades:
6-12
Lesson Number:
5
Description:

Students will learn about wind and how wind varies across geographies. Students will use Vernier Wind Turbine kits or homemade wind turbines to experiment with blade angles and wind speed. During experimentation, students will collect data as blade angles...

+
-
More Details Less Details
Learning Goal(s):
1.Students will conduct an experiment where blade angles are the variable and wind speed is constant.2.Students will conduct an experiment where blade angles are constant and wind speed varies.3.Students will collect and analyze data to provide a conclusion to the questions: What is the optimal blade angle for generating the most energy? What is the optimal wind speed for generating the most energy?4.Students will research prevailing winds and use a provided map of their region to indicate wind speed and direction.5.Students will propose locations for wind farms based on optimal energy generation and zoning restrictions.6.Based on their proposals, students will determine a range of potential kilowatt generation from wind power.
Author:
Jonathan Strunin
Estimated Activity Length:
10 hours