Electric Current Induction

Wave Attenuator Unit Overview

Grades:
6-12
Description:
Through a series of learning experiences, students will experiment with the basic concepts of motion to electrical energy transformation. Students start by building a series of models that demonstrate the interactions between magnetic and electric fields...
+
-
More Details Less Details
Learning Goal(s):
1. Students will demonstrate energy transfer through space using electromagnetic phenomena. 2. Students will design a model that demonstrates that a current-carrying wire can induce magnetism. 3. Students will define and build an electromagnet. 4. Students will demonstrate electromagnetic induction. 5. Students will describe and model the energy transfer and transformation in a wave attenuator. 6. Students will build a wave attenuator using a diagram and selected materials. 7. Students will test the model wave attenuator they built. 8. Students will investigate variables that may affect the output of an energy conversion device (wave attenuator). 9. Students will interpret data to identify which variables increase electrical output for these model wave attenuators. 10. Students will communicate results from scientific inquiry to identify factors that are important to optimizing the design of a wave attenuator.
Author:
Tabatha Roderick
Estimated Activity Length:
10 hours
Wave Attenuator

Testing a Tidal Wave Attenuator

Grades:
6-12
Lesson Number:
3
Description:
Students will test the efficiency of the tidal wave attenuator models that they previously built. They will determine variables on their models they can manipulate, such as wire gauge and magnet strength, and measure the effects of manipulating this variable...
Energy Content:
+
-
More Details Less Details
Learning Goal(s):
1. Students will investigate variables that may affect the output of an energy conversion device (wave attenuator). 2. Students will interpret data to identify which variables increase electrical output for these model wave attenuators. 3. Students will communicate results from scientific inquiry to identify factors that are important to optimizing the design of a wave attenuator.
Author:
Tabatha Roderick
Estimated Activity Length:
5 hours
Electric Current Induction

Introduction to Electromagnetism

Grades:
6-12
Lesson Number:
1
Description:
Through a series of goal-oriented activities and research, students will build physical models that demonstrate the interactions between magnetism and magnetic fields as well as interactions between magnetism and electric fields. Students will be challenged...
+
-
More Details Less Details
Learning Goal(s):
1. Students will demonstrate energy transfer through space using electromagnetic phenomena. 2. Students will design a model that demonstrates that a current-carrying wire can induce magnetism. 3. Students will define and build an electromagnet. 4. Students will demonstrate electromagnetic induction.
Author:
Tabatha Roderick
Estimated Activity Length:
3 hours
Solar Charger Diagram

Photovoltaic Solutions "Shark-Tank Style"

Grades:
10-12
Lesson Number:
5
Description:
In this lesson, the students will take their knowledge gained in the previous activities to innovate design solutions that will allow PV technology to plan an increased role in the transportation sector. The challenge given to them is to design a BEV that...
+
-
More Details Less Details
Learning Goal(s):
1. Students will use data and mathematics to design a solution for using PV technology in the transportation sector. 2. Students will create a presentation with visuals and specs outlining their proposed solution. 3. Students will present and attempt to “sell” their products to a panel of judges.
Author:
Clayton Hudiburg
Estimated Activity Length:
5 hours
Car Charger Schematic

Designing a Solar Phone Charger

Grades:
7-12
Unit:
Lesson Number:
7
Description:
This is the culminating activity for the unit “Off the Grid.” Students will be given some restricted parameters around which to design a solar powered battery operated phone (or other USB device) charger . They will charge the AA battery packs that have been...
+
-
More Details Less Details
Learning Goal(s):
1. Students will be able to design a device that can charge a phone with 4 hours of sun a day. 2. Students will use collected data and be able to support their design – i.e. the data will show that the unit will produce enough energy to charge a phone given it receives 4 hours of sun a day. 3. Students will also be able to calculate efficiency from their power calculations. 4. Students will be able to compare efficiencies of their circuit to others tested in this unit. 5. Students can calculate how much energy 4 hours of sunlight can produce on the solar modules they will use.
Pedagogy & Practice:
Author:
Brett McFarland
Relevant NGSS PE:
Estimated Activity Length:
5 hours
BioLite

Biolite - Fire to Phone Charging

Grades:
7-12
Unit:
Lesson Number:
6
Description:
This is the 6 th part in the Off the Grid Unit. This lesson continues to look at the efficiency of USB charging devices, but this time we will be using a commercially available camping stove that uses heat to create electricity in order to charge a phone...
+
-
More Details Less Details
Learning Goal(s):
1. Students will use thermometers and a stopwatch to calculate power. 2. Students will use collected data and be able to make power calculations from this data. 3. Students will also be able to calculate efficiency from their power calculations. 4. Students will be able to compare efficiencies to other circuits tested in this unit. 5. Students will know what the Peltier Junction does.
Author:
Brett McFarland
Relevant NGSS PE:
Estimated Activity Length:
1 hour
Car Charger Schematic

DC to AC to DC Efficiency

Grades:
7-12
Unit:
Lesson Number:
5
Description:
This is part of the Off the Grid Unit. This lesson will continue to deal with efficiency of USB charging devices, but this time we will be using an inverter in order to create AC voltage from a battery pack, and then use a standard AC charger (what you would...
Energy Content:
+
-
More Details Less Details
Learning Goal(s):
1. Students will use multimeters to measure voltage and current in circuits. 2. Students will use collected data and be able to make power calculations from this data. 3. Students will also be able to calculate efficiency from their power calculations. 4. Students will be able to compare efficiencies in order to identify the circuit that is most efficient. 5. Students will be able to make circuits from a diagram and vice versa. 6. Students will know what an inverter is and what it does.
Pedagogy & Practice:
Author:
Brett McFarland
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
3 hours
Car Charger Schematic

Exploring Buck and Boost Converters

Grades:
7-12
Unit:
Lesson Number:
4
Description:
This lab uses a variety of voltage conversion devices to output 5 Volts, the requirements for a USB charger such as for a cell phone. Students will take data on these devices and calculate, graph and compare efficiencies of different devices. Devices used in...
+
-
More Details Less Details
Learning Goal(s):
1. Students will use multimeters to measure voltage and current in circuits. 2. Students will use collected data and be able to make power calculations from this data. 3. Students will also be able to calculate efficiency from their power calculations. 4. Students will be able to compare efficiencies in order to identify the circuit that is most efficient. 5. Students will be able to make circuits from a diagram and vice versa.
Pedagogy & Practice:
Author:
Brett McFarland
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
3 hours
Car Charger Schematic

Phone Charger Efficiency

Grades:
7-12
Unit:
Lesson Number:
3
Description:
This is part of the Off the Grid Unit. In this lesson students will explore the concept of efficiency , and how to take data in order to calculate the efficiency of various cell phone or USB charging circuits. They will complete this process by using a...
+
-
More Details Less Details
Learning Goal(s):
1. Students will use multimeters to measure voltage and current in circuits. 2. Students will use collected data and be able to make power calculations from this data. 3. Students will also be able to calculate efficiency from their power calculations. 4. Students will be able to compare efficiencies in order to identify the circuit that is most efficient. 5. Students will be able to make circuits from a diagram and vice versa.
Pedagogy & Practice:
Author:
Brett McFarland
Relevant NGSS PE:
Estimated Activity Length:
2 hours
Car Charger Schematic

Activities and Assessment of Vocab and Units

Grades:
7-12
Unit:
Lesson Number:
2
Description:
This lesson is intended as a way to check for student understanding regarding the content presented in the previous lesson of this unit. The assessment takes place in two parts: a written assessment of content-related vocabulary and concepts as well as a...
+
-
More Details Less Details
Learning Goal(s):
Students will be able to define voltage, current, power and energy as it relates to electricity.Students will be able to define electricity and have the units for all the above terms in their Journals.Students will be able to set up multimeters for voltage and current and will be assessed on this.
Author:
Brett McFarland
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
2 hours