Hot Pack

Unit Plan - Chemical Differences in Emergency Energy Sources

Grades:
7-8
Learning Goal(s):
To build empathy for people in emergency situations and an understanding of how access to energy resources can increase one’s safety, health, and comfort. To understand the nature of a variety of energy needs and how different applications have different optimal solutions. To develop models to explain the molecular and extended structures of energy resources, including how the resources change when energy is generated (Electron movement in PV cells, combustion reactions in fuel). To understand that the properties of substances depends upon the atomic / molecular structure, which changes with chemical reactions. To build a circuit that includes a solar module and measure the voltage and current. To gather and evaluate information to describe the impact on society of converting natural resources into PV cells. To design, build and test a device that uses a chemical reaction to generate or absorb thermal energy. Evaluate and revise a plan for the energy resources one should store to prepare for a natural disaster. 
+
-
More Details Less Details
Sphero SPRK+

Solar SPRK: Mars Exploration Debate

Grades:
6-8
Energy Content:
Learning Goal(s):
Students will identify high quality scientific information through research that represents multiple sides of an argument.Students will communicate a pre-determined side of an argument verbally, using evidence to support their claims.
+
-
More Details Less Details
Unit:
Lesson Number:
3
Author:
Deb Frankel
Relevant NGSS PE:
Estimated Activity Length:
2 hours
Thermal Convection

Where Does Energy Go?

Grades:
3-8
Learning Goal(s):
Students will understand that hot air risesStudents will understand why hot water and hot air rise and cold air and cold water sink.Students will learn that wind is produced by warm air rising and cold air sinking.Students will learn that the energy of moving hot air can be converted into other forms of energy.Students will understand that energy from the sun can be converted into heat.Students will discuss the effects of the chimney stack phenomenon.
+
-
More Details Less Details
Sources of Energy

Informative Writing: Where Does Energy Come From?

Grades:
3-8
Learning Goal(s):
Students will understand ten renewable and non-renewable energy sources on the earth.Students will learn the locations of different energy sources on the earth.Students will learn the history of energy sources and how they have been used by humans.Students will learn about innovations and inventions used to find, recover, store and release energy for human consumption.
+
-
More Details Less Details
Solar Updraft Tower

Solar Updraft Towers Unit Overview

Grades:
3-8
Learning Goal(s):
Students will understand ten renewable and non-renewable energy sources on the earth.Students will learn the locations of different energy sources on the earth.Students will learn the history of energy sources and how humans have used them.Students will learn about innovations and inventions used to find, recover, store, and release energy for human consumption.Students will understand that hot air risesStudents will understand why hot water and hot air rise and cold air and cold water sink.Students will learn that wind is produced by warm air rising and cold air sinking.Students will learn that the energy of moving hot air can be converted into other forms of energy.Students will understand that energy from the sun can be converted into heat.Students will discuss the effects of the chimney stack phenomenon.Students will understand that wind energy can be converted into other forms of energy.Students will determine different methods to increase the effectiveness of a wind turbine blade by harnessing and converting the mechanical energy of the wind.Students will determine that thermal energy resulting from the sun’s radiation can create an updraft that will power a turbine to spin.                                       Students will identify characteristics of turbine design that improve the success of their device.Students will utilize content from previous phenomena they investigated, such as the chimney stack effect and Norwegian candle toys, to determine how to best harness the energy transformed by their device from the sun.Students will be able to define and explain what a solar updraft tower is.Students will make connections between their previous engineering challenge and a real world solution to the world’s growing energy demands.
+
-
More Details Less Details
Electric Current Induction

Wave Attenuator Unit Overview

Grades:
6-12
Learning Goal(s):
1. Students will demonstrate energy transfer through space using electromagnetic phenomena. 2. Students will design a model that demonstrates that a current-carrying wire can induce magnetism. 3. Students will define and build an electromagnet. 4. Students will demonstrate electromagnetic induction. 5. Students will describe and model the energy transfer and transformation in a wave attenuator. 6. Students will build a wave attenuator using a diagram and selected materials. 7. Students will test the model wave attenuator they built. 8. Students will investigate variables that may affect the output of an energy conversion device (wave attenuator). 9. Students will interpret data to identify which variables increase electrical output for these model wave attenuators. 10. Students will communicate results from scientific inquiry to identify factors that are important to optimizing the design of a wave attenuator.
+
-
More Details Less Details
Wave Attenuator

Testing a Tidal Wave Attenuator

Grades:
6-12
Energy Content:
Learning Goal(s):
1. Students will investigate variables that may affect the output of an energy conversion device (wave attenuator). 2. Students will interpret data to identify which variables increase electrical output for these model wave attenuators. 3. Students will communicate results from scientific inquiry to identify factors that are important to optimizing the design of a wave attenuator.
+
-
More Details Less Details
Electric Current Induction

Introduction to Electromagnetism

Grades:
6-12
Learning Goal(s):
1. Students will demonstrate energy transfer through space using electromagnetic phenomena. 2. Students will design a model that demonstrates that a current-carrying wire can induce magnetism. 3. Students will define and build an electromagnet. 4. Students will demonstrate electromagnetic induction.
+
-
More Details Less Details
Solar Charger Diagram

Photovoltaic Solutions "Shark-Tank Style"

Grades:
10-12
Learning Goal(s):
1. Students will use data and mathematics to design a solution for using PV technology in the transportation sector. 2. Students will create a presentation with visuals and specs outlining their proposed solution. 3. Students will present and attempt to “sell” their products to a panel of judges.
+
-
More Details Less Details
Lesson Number:
5
Author:
Clayton Hudiburg
Estimated Activity Length:
5 hours
Car Charger Schematic

Designing a Solar Phone Charger

Grades:
7-12
Learning Goal(s):
1. Students will be able to design a device that can charge a phone with 4 hours of sun a day. 2. Students will use collected data and be able to support their design – i.e. the data will show that the unit will produce enough energy to charge a phone given it receives 4 hours of sun a day. 3. Students will also be able to calculate efficiency from their power calculations. 4. Students will be able to compare efficiencies of their circuit to others tested in this unit. 5. Students can calculate how much energy 4 hours of sunlight can produce on the solar modules they will use.
+
-
More Details Less Details