Wave Attenuator

Building a Tidal Wave Attenuator

Grades:
6-12
Lesson Number:
2
Description:

This lesson is designed to build upon investigations of electromagnetic energy by applying these phenomena to transfer the kinetic energy moving in waves to electricity by building a wave attenuator.

+
-
More Details Less Details
Learning Goal(s):
1. Students will describe and model the energy transfer and transformation in a wave attenuator. 2. Students will build a wave attenuator using a diagram and selected materials. 3. Students will test the model wave attenuator they built.
Author:
Tabatha Roderick
Estimated Activity Length:
2 hours

Keeping it Cool With Solar: Making Shade

Grades:
K-2
Lesson Number:
2
Description:

This lesson is designed for one 30-minute session. After reviewing the hot/cool playground spots from Lesson 1, Students will be asked, “On a hot day, which materials might keep the ground the coolest?”. Students will be given tissue paper, photocopy...

+
-
More Details Less Details

Creating the Most Effective Solar Heater

Grades:
6-8
Lesson Number:
3
Description:

This part can be staged as a competition or simply a personal challenge to beat the standard solar heater created in part 1. During this stage of the lesson students are asked to analyze data and results from part 2 and identify which characteristics of a...

+
-
More Details Less Details
Solar Circuit

How Tilt Angle Affects Solar Cell Output

Grades:
6-8
Unit:
Lesson Number:
3
Description:

Students will expose solar cells to a light source from a set distance and measure the output with a multimeter. Students will change the angle that the light source strikes the solar panel and measure the resultant output. They will compare and contrast...

+
-
More Details Less Details
Learning Goal(s):
After the completion of this lab, students will be able to describe how the angle of light exposure affects solar cell output, have practiced using a multimeter, and have analyzed collected data.
Author:
Todd Freiboth
Estimated Activity Length:
40 min

Build Solar Cars

Grades:
4-6
Unit:
Lesson Number:
3
Description:

Students will build their solar vehicles. There are many options for them to do this, depending on the specific variables hoping to be tested following the construction and material-selection process. Students will be given the opportunity to try out...

+
-
More Details Less Details
Learning Goal(s):
Students will construct a geared solar car, a pulley-system solar car, or both. Students will make verbal predictions about the outcomes and viabilities of different types of solar cars. Students will pinpoint the independent, dependent, and control variables in their solar car testing process.
Author:
Carol Patrick
Other Subjects Covered:
Estimated Activity Length:
50 min
 Foil Barge

What is Force?

Grades:
4-6
Unit:
Lesson Number:
3
Description:

Students will build a barge out of tin foil and describe the forces acting it. The barge itself is designed only with the constraints that passengers within the barge will not get wet, allowing for students to experiment with different shapes and...

+
-
More Details Less Details
Learning Goal(s):
Students will identify the Laws of Motion and learn about the forces acting on the system. There are multiple forces acting on a boat, some of these forces include, acceleration, friction, gravity and thrust.
Author:
Carol Patrick
Other Subjects Covered:
Estimated Activity Length:
1 hour
Design a 50 Year Energy Plan

Scaling up to Power Production: Let’s Engineer a Wind Turbine

Grades:
9-12
Lesson Number:
3
Description:

After working through Lessons 1 and 2 of this Unit, students are now familiar with the physics of how generators work. The next step in Lesson 3 is to investigate how existing power generation systems operate and supply electricity to entire geographic...

+
-
More Details Less Details
Learning Goal(s):
1. Design, build, and refine a wind turbine in order to effectively and efficiently convert motion into mechanical energy and then into electrical energy 
Author:
Bradford Hill
Relevant NGSS PE:
Estimated Activity Length:
5 hours
Solar Calculator

Solar Powered Calculator

Grades:
2-5
Lesson Number:
3
Description:

The teacher will show an example of a solar powered device using a solar powered calculator.

+
-
More Details Less Details
Learning Goal(s):
Students will be able to explain that some devices use light energy and transform into electrical energy, which powers different devices such as lights.
Author:
Mike Hellis
Relevant NGSS PE:
Estimated Activity Length:
0 sec
WindMaterials_DSCN2143.jpg

Wind Power: A Hands on Experience

Grades:
3-8
Lesson Number:
3
Description:

This lesson challenges students to work in teams to design successful turbine blades for the “KidWind Firefly”. The firefly has an LED light that lights up when the students have designed turbine blades that spin effectively. This lesson provides students...

+
-
More Details Less Details
Learning Goal(s):
Students will understand that wind energy can be converted into other forms of energy.Students will determine different methods to increase the effectiveness of a wind turbine blade at harnessing and converting the mechanical energy of the wind.
Author:
Lisa Morgan
Estimated Activity Length:
2 hours
Wave Attenuator

Testing a Tidal Wave Attenuator

Grades:
6-12
Lesson Number:
3
Description:

Students will test the efficiency of the tidal wave attenuator models that they previously built. They will determine variables on their models they can manipulate, such as wire gauge and magnet strength, and measure the effects of manipulating this...

Energy Content:
+
-
More Details Less Details
Learning Goal(s):
1. Students will investigate variables that may affect the output of an energy conversion device (wave attenuator). 2. Students will interpret data to identify which variables increase electrical output for these model wave attenuators. 3. Students will communicate results from scientific inquiry to identify factors that are important to optimizing the design of a wave attenuator.
Author:
Tabatha Roderick
Estimated Activity Length:
5 hours