Solar Charger Diagram

Designing a Solar Charger

Grades:
10-12
Lesson Number:
4
Description:

In this lesson, students will further explore the potential and challenges related to using photovoltaics to supplement the power needed to charge batteries in BEVs. Students will be provided with a 12 V lead-acid battery and several 3 V, 1.5 A solar...

+
-
More Details Less Details
Learning Goal(s):
1. Students will explore the role of series and parallel wiring as they pertain to voltage and amperage. 2. Students will explore the processes involved with charging batteries and relate these processes to voltage and amperage. 3. Students will test photovoltaic modules to identify voltage and amperage outputs. 4. Students will design a system of wiring 3 V, 1.5 A modules together as a means to charge a 12 V lead-acid battery 5. Students will predict and test the effectiveness of their designed solar charger.
Author:
Clayton Hudiburg
Estimated Activity Length:
4 hours
Car Charger Schematic

Exploring Buck and Boost Converters

Grades:
7-12
Unit:
Lesson Number:
4
Description:

This lab uses a variety of voltage conversion devices to output 5 Volts, the requirements for a USB charger such as for a cell phone. Students will take data on these devices and calculate, graph and compare efficiencies of different devices. Devices used...

+
-
More Details Less Details
Learning Goal(s):
1. Students will use multimeters to measure voltage and current in circuits. 2. Students will use collected data and be able to make power calculations from this data. 3. Students will also be able to calculate efficiency from their power calculations. 4. Students will be able to compare efficiencies in order to identify the circuit that is most efficient. 5. Students will be able to make circuits from a diagram and vice versa.
Pedagogy & Practice:
Author:
Brett McFarland
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
3 hours
Kill-A-Watt_Meter

Energy Efficiency - Lighting

Grades:
4-5
Unit:
Lesson Number:
4
Description:

In this lesson, students will learn how to read light bulb packaging (lighting facts) and do a whole class experiment comparing a 60-watt incandescent to an equivalent CFL and an LED bulb. This experiment will be conducted using a kil-o-watt meter,...

+
-
More Details Less Details
Learning Goal(s):
Students will understand what energy efficiency means, and learn how to choose energy efficient light bulbs. Students will determine which lightbulbs are the most efficient. Students will understand how energy efficiency relates to energy generation and climate change.
Author:
Debbie Abel
Estimated Activity Length:
50 min
Solar Circuit

A Simple Circuit

Grades:
2-5
Lesson Number:
4
Description:

Students make a hypothesis about how a set of materials should be connected in order to make a motor spin. Through guided trial and error students are led to the idea of a circuit as the proper way to connect the materials in order to make the fan turn....

+
-
More Details Less Details
Learning Goal(s):
Students will be able to draw a simple circuit, label its parts, and show the direction/path that current is flowing.
NGSS Science and Engineering Practices:
Author:
Mike Hellis
Estimated Activity Length:
50 min
Solar Car Student

Solar Car Challenge: Team Brainstorm

Grades:
6-8
Lesson Number:
4
Description:

Students will play around with the solar car kits to familiarize themselves with the materials in preparation for the solar car engineering challenge.

Energy Content:
+
-
More Details Less Details
Learning Goal(s):
To introduce students to the problem that this project will attempt to solve: building a solar car that will go straight, far, and fast to win a race.
Author:
Karen Nelson
Other Subjects Covered:
Estimated Activity Length:
50 min

Design and Engineer Solutions

Grades:
5-8
Lesson Number:
4
Description:

This lesson is designed to span 9 days with 50-minute sessions. The students will use a Design and Engineering Journal to guide them in the design and engineering process. In small groups they will use the research from lesson 2 to formulate solutions to...

+
-
More Details Less Details

Keeping it Cool With Solar: Build Time

Grades:
K-2
Lesson Number:
4
Description:

This lesson is designed for one 30-minute session. Students build their structures based on their designs from Lesson 3. Students share evidence about ho w their structures affect the sunlight on the earth’s surface.

+
-
More Details Less Details
Car Charger Schematic

DC to AC to DC Efficiency

Grades:
7-12
Unit:
Lesson Number:
5
Description:

This is part of the Off the Grid Unit. This lesson will continue to deal with efficiency of USB charging devices, but this time we will be using an inverter in order to create AC voltage from a battery pack, and then use a standard AC charger (what you...

+
-
More Details Less Details
Learning Goal(s):
1. Students will use multimeters to measure voltage and current in circuits. 2. Students will use collected data and be able to make power calculations from this data. 3. Students will also be able to calculate efficiency from their power calculations. 4. Students will be able to compare efficiencies in order to identify the circuit that is most efficient. 5. Students will be able to make circuits from a diagram and vice versa. 6. Students will know what an inverter is and what it does.
Pedagogy & Practice:
Author:
Brett McFarland
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
3 hours
Solar Mobile

Solar Mobile Design Challenge - Construction

Grades:
6-8
Lesson Number:
5
Description:

This is the culminating hands-on project for the Solar Mobile Design Challenge Lessons, with construction aligned to an engineering design process. Students start by Restating the Design Problem that was introduced to them in the beginning of the Unit....

+
-
More Details Less Details
Learning Goal(s):
Students brainstorm ideas and share with their group.Students draw and label Solar Mobile designs in Engineering Notebooks. Students research an aircraft to trace (if this was not accomplished in the Center of Gravity lesson) and trace the aircraft outline onto foam board. Students construct a solar circuit to power motors and propellers on a foam board aircraft and test multiple times before adding to the solar mobile stand. Students construct solar mobile stand and add their aircraft to a dowel attached to the central hub. Students work with a partner to balance each aircraft onto the mobile. Students test the mobile speed outside (depending on weather) and compare to speed under indoor light stands. After initial testing, students redesign circuits or mobile construction to optimize design. Students use hand-held devices to film their moving Mobiles to judge the machine’s speed. Students demonstrate how their Solar Mobile works and justify in writing why their mobile should be chosen for the Children’s Technology Museum. 
Author:
Kristy Schneider
Other Subjects Covered:
Estimated Activity Length:
6 hours

Using Multiple Solar Modules

Grades:
3-5
Lesson Number:
5
Description:

Students first explore with 0.5 Volt solar cells to see whether adding cells to a circuit increases the amount of water pumped by a small pump. They are introduced to parallel and series wiring. They then design and carry out a formal experiment to test...

+
-
More Details Less Details
Learning Goal(s):
Students will apply scientific ideas to design and test a solar powered water pump that moves water at the fastest rate. Students will experiment and build understanding of parallel and series wiring and how energy moves in these circuits. Students will record data accurately into a table.
Author:
Leah Gorman
Relevant NGSS PE:
Estimated Activity Length:
3 hours