2-wheel-driveSolarCar_IMG_4600.jpg

Solar Car Challenge: Introduction of the Problem

Grades:
6-8
Lesson Number:
1
Description:

Students will play around with the solar car kits to familiarize themselves with the materials in preparation for the solar car engineering challenge.

Energy Content:
+
-
More Details Less Details
Learning Goal(s):
To introduce students to the problem that this project will attempt to solve: building a solar car that will go straight, far, and fast to win a race.
Author:
Karen Nelson
Estimated Activity Length:
2 hours

TinkerCAD: Introduction to 3D Printing

Grades:
5-8
Lesson Number:
1
Description:

This lesson is designed to span 5 days with 50-minute sections. After the introduction day, each day the students work toward mastery on the TinkerCAD tutorial online to learn how to create printable 3D models. At the end of the 4 days the students will...

+
-
More Details Less Details
Wadsworth OH thumbnail

Let’s Get Cooking!

Grades:
4-5
Lesson Number:
10
Description:

The purpose of this lesson is to provide students with a hands-on experience using the sun to cook cornbread or cookies. Students will also learn to use an infrared thermometer. There is also an optional extension for the class or individual students to...

+
-
More Details Less Details
Learning Goal(s):
At the end of this lesson students will be able to: • Follow and prepare a recipe for cookies. • Learn to take and record oven temperature every 30 minutes using an infrared thermometer. • Evaluate the three ovens with a pros and cons list for each one after cooking. • Write one or two of their own questions. • Make suggestions for design changes.
Author:
Lisa Morgan
Other Subjects Covered:
Estimated Activity Length:
3 hours
Wadsworth OH thumbnail

Build the Ultimate Solar Oven

Grades:
3-5
Lesson Number:
11
Description:

The purpose of this lesson is to take everything the students have learned and experienced up to this point and use it to build their own Ultimate Solar Oven using items found at school, home, the Dollar store or home improvement store for under 5 dollars...

+
-
More Details Less Details
Learning Goal(s):
At the end of this lesson students will be able to: plan, sketch, design and build a new solar oven. In addition, students will be able to cook food with their solar oven.
Pedagogy & Practice:
Author:
Lisa Morgan
Other Subjects Covered:
Estimated Activity Length:
10 hours

Manipulating Design Variables on Solar Heaters

Grades:
6-8
Lesson Number:
2
Description:

Part 2 builds on part 1, asking students to design a solar heater that more effectively collects solar energy. Students are provided with various building supplies and are asked to change one variable from the standard to construct a new, more effective...

+
-
More Details Less Details
Sphero SPRK+

Solar SPRK+: Sphero Edu Coding

Grades:
6-8
Unit:
Lesson Number:
2
Description:

After working on a few Scratch drag and drop programs, participants will transition to Sphero Edu, a comparable drag and drop program for Lesson 2 to prepare to program a Sphero SPRK+ ball to navigate through a maze.

+
-
More Details Less Details
Learning Goal(s):
Students will use block programming and Oval Language in order to make a SPRK+ perform a variety of motion-oriented tasks.Students will combine motion and sound functions using block programming and Oval Language.Students will track useful pieces of sequence code that they can reuse in order to get their SPRK+ to navigate a lengthy maze.
NGSS Science and Engineering Practices:
Author:
Deb Frankel
Other Subjects Covered:
Estimated Activity Length:
5 hours
Wave Attenuator

Building a Tidal Wave Attenuator

Grades:
6-12
Lesson Number:
2
Description:

This lesson is designed to build upon investigations of electromagnetic energy by applying these phenomena to transfer the kinetic energy moving in waves to electricity by building a wave attenuator.

+
-
More Details Less Details
Learning Goal(s):
1. Students will describe and model the energy transfer and transformation in a wave attenuator. 2. Students will build a wave attenuator using a diagram and selected materials. 3. Students will test the model wave attenuator they built.
Author:
Tabatha Roderick
Estimated Activity Length:
2 hours

The Problem of Plastic Trash Islands

Grades:
5-8
Lesson Number:
2
Description:

This lesson is designed for 3 days, 50-minute sessions. The students will watch videos and take 2 column notes to guide independent research. The students will examine different solutions that are already being tried and experimental solutions that have...

+
-
More Details Less Details
Learning Goal(s):
Students will read and watch various informational texts and resources and take structured notes to support comprehension.Students will conduct independent research on a current eventStudents will create a google slide show or other presentation and present their findings and ideas.Students will practice speaking and listening skills.
Author:
Jonathan Strunin
Estimated Activity Length:
2 hours
Sphero SPRK+

Solar SPRK: Mars Exploration Debate

Grades:
6-8
Unit:
Lesson Number:
3
Description:

Students will research and then debate about the value of Mars exploration through robotic and/or human missions using a debate structure.

Energy Content:
+
-
More Details Less Details
Learning Goal(s):
Students will identify high quality scientific information through research that represents multiple sides of an argument.Students will communicate a pre-determined side of an argument verbally, using evidence to support their claims.
Author:
Deb Frankel
Estimated Activity Length:
2 hours
Wave Attenuator

Testing a Tidal Wave Attenuator

Grades:
6-12
Lesson Number:
3
Description:

Students will test the efficiency of the tidal wave attenuator models that they previously built. They will determine variables on their models they can manipulate, such as wire gauge and magnet strength, and measure the effects of manipulating this...

Energy Content:
+
-
More Details Less Details
Learning Goal(s):
1. Students will investigate variables that may affect the output of an energy conversion device (wave attenuator). 2. Students will interpret data to identify which variables increase electrical output for these model wave attenuators. 3. Students will communicate results from scientific inquiry to identify factors that are important to optimizing the design of a wave attenuator.
Author:
Tabatha Roderick
Estimated Activity Length:
5 hours