Hot Pack

Unit Plan - Chemical Differences in Emergency Energy Sources

Grades:
7-8
Description:

Students develop atomic and molecular models of energy resources, analyze combustion of various fuels and build circuits with Photovolatic (PV) modules to evaluate and suggest revisions to a disaster preparedness supply list. They then research and...

+
-
More Details Less Details
Learning Goal(s):
To build empathy for people in emergency situations and an understanding of how access to energy resources can increase one’s safety, health, and comfort. To understand the nature of a variety of energy needs and how different applications have different optimal solutions. To develop models to explain the molecular and extended structures of energy resources, including how the resources change when energy is generated (Electron movement in PV cells, combustion reactions in fuel). To understand that the properties of substances depends upon the atomic / molecular structure, which changes with chemical reactions. To build a circuit that includes a solar module and measure the voltage and current. To gather and evaluate information to describe the impact on society of converting natural resources into PV cells. To design, build and test a device that uses a chemical reaction to generate or absorb thermal energy. Evaluate and revise a plan for the energy resources one should store to prepare for a natural disaster. 
Author:
Melody Childers
Estimated Activity Length:
0 sec
Solar Updraft Tower

Solar Updraft Towers Unit Overview

Grades:
3-8
Description:

Students will combine research, direct observations, and hands-on investigation to lead them into an engineering design project involving the construction of a solar updraft tower. During this process, students will make references to specific phenomena...

+
-
More Details Less Details
Learning Goal(s):
Students will understand ten renewable and non-renewable energy sources on the earth.Students will learn the locations of different energy sources on the earth.Students will learn the history of energy sources and how humans have used them.Students will learn about innovations and inventions used to find, recover, store, and release energy for human consumption.Students will understand that hot air risesStudents will understand why hot water and hot air rise and cold air and cold water sink.Students will learn that wind is produced by warm air rising and cold air sinking.Students will learn that the energy of moving hot air can be converted into other forms of energy.Students will understand that energy from the sun can be converted into heat.Students will discuss the effects of the chimney stack phenomenon.Students will understand that wind energy can be converted into other forms of energy.Students will determine different methods to increase the effectiveness of a wind turbine blade by harnessing and converting the mechanical energy of the wind.Students will determine that thermal energy resulting from the sun’s radiation can create an updraft that will power a turbine to spin.                                       Students will identify characteristics of turbine design that improve the success of their device.Students will utilize content from previous phenomena they investigated, such as the chimney stack effect and Norwegian candle toys, to determine how to best harness the energy transformed by their device from the sun.Students will be able to define and explain what a solar updraft tower is.Students will make connections between their previous engineering challenge and a real world solution to the world’s growing energy demands.
Author:
Lisa Morgan
Estimated Activity Length:
10 hours
Sun in Space

Our Place in Space: Cosmic Rays

Grades:
3-5
Lesson Number:
1
Description:

NOTE: SUN PHOTOMETER SUMULATOR AT CAS.HAMPTONU.EDU SEEMS TO BE NO LONGER AVAILABLE.

Using a map of school buildings, students will pick four areas to monitor over the year using wireless weather stations and the Solar Power Meter. In a following...

+
-
More Details Less Details
Learning Goal(s):
Students will learn how the sun affects their school by measuring the temperature at different locations around the building in the fall, winter, and spring. They will learn how to measure solar energy and look for trends in temperature and solar power over the year. These trends will then be used to investigate how energy reaches Earth from the Sun.
Author:
Jamie Repasky
Estimated Activity Length:
3 hours
Energy Transformations

What is Energy?

Grades:
4-6
Unit:
Lesson Number:
1
Description:

Students will gain an understanding of the fundamentals of energy through observing a variety of energy transformations and develop a foundational vocabulary for identifying and discussing energy concepts. Students will make observations about how energy...

+
-
More Details Less Details
Learning Goal(s):
Students will obtain the foundational knowledge of energy sources and forms of energy. In addition, students will learn that energy can transfer from one form to another. Students will build the understanding that there are different types of energy and many can not be directly observed.
NGSS Science and Engineering Practices:
Author:
Carol Patrick
Relevant NGSS PE:
Estimated Activity Length:
1 hour
Simple Solar Water Heater

Making the Standard Solar Heater

Grades:
6-8
Lesson Number:
1
Description:

In part one of the activity students will be asked to create a simple solar heater, measure the temperature change in a vial of water, then calculate the heat energy transferred to a vial of water. Students will construct the solar heater, place a set...

+
-
More Details Less Details
Learning Goal(s):
In this activity students will learn that sunlight energy can be transformed into other forms of energy and that the amount of sunlight energy captured by an object can be quantified and measured.
Author:
Nathan Franck
Estimated Activity Length:
1 hour
Solar Thermal Jug

Passive Solar Water Heating

Grades:
6-12
Lesson Number:
1
Description:

Students retrofit milk jugs to absorb and retain the most solar energy. This process involves students collecting data that measures the impacts of different variables on the solar energy absorbed by each collection device. Students should be able to see...

+
-
More Details Less Details
Learning Goal(s):
1. Students will cover/manipulate milk jugs to achieve the most solar energy absorption. 2. Students will calculate the joules of energy absorbed by the solar heated water. 3. Students will measure and graph the temperature changes of their solar milk jugs. 4. Students will gain an understanding of the amount of energy in sunlight.
Author:
Tami Church
Estimated Activity Length:
2 hours
Wadsworth OH thumbnail

Let’s Get Cooking!

Grades:
4-5
Lesson Number:
10
Description:

The purpose of this lesson is to provide students with a hands-on experience using the sun to cook cornbread or cookies. Students will also learn to use an infrared thermometer. There is also an optional extension for the class or individual students to...

+
-
More Details Less Details
Learning Goal(s):
At the end of this lesson students will be able to: • Follow and prepare a recipe for cookies. • Learn to take and record oven temperature every 30 minutes using an infrared thermometer. • Evaluate the three ovens with a pros and cons list for each one after cooking. • Write one or two of their own questions. • Make suggestions for design changes.
Author:
Lisa Morgan
Other Subjects Covered:
Estimated Activity Length:
3 hours
All American Sun Oven

Heat Conduction of Different Materials

Grades:
4-5
Unit:
Lesson Number:
10
Description:

After a demonstration using Amazing Ice Melting Blocks, students will conduct small temperature experiments using different types of materials. They will use what they learn to build their solar ovens and additionally answer discussion questions in their...

+
-
More Details Less Details
Learning Goal(s):
Students will learn that the material of the item that they choose to cook their egg in matters because different materials conduct heat differently. Students will compare insulators with conductors. Students will determine the purpose of conductors within a solar oven.
NGSS Science and Engineering Practices:
Author:
Debbie Abel
Estimated Activity Length:
50 min
Wadsworth OH thumbnail

Build the Ultimate Solar Oven

Grades:
3-5
Lesson Number:
11
Description:

The purpose of this lesson is to take everything the students have learned and experienced up to this point and use it to build their own Ultimate Solar Oven using items found at school, home, the Dollar store or home improvement store for under 5 dollars...

+
-
More Details Less Details
Learning Goal(s):
At the end of this lesson students will be able to: plan, sketch, design and build a new solar oven. In addition, students will be able to cook food with their solar oven.
Pedagogy & Practice:
Author:
Lisa Morgan
Other Subjects Covered:
Estimated Activity Length:
10 hours
All American Sun Oven

Solar Ovens: Choosing Colors

Grades:
4-5
Unit:
Lesson Number:
11
Description:

Students will conduct experiments using different colors of paper. During this process, they will make observations about the functionality of different colors when incorporated into design in relation to reflection and absorption. Students will use what...

+
-
More Details Less Details
Learning Goal(s):
Students will learn that darker colors absorb more sunlight and get warmer. Students will understand the relation of absorption to thermal radiation emission. Students will conduct an experiment that isolates color as a variable to test.
Pedagogy & Practice:
NGSS Science and Engineering Practices:
Author:
Debbie Abel
Other Subjects Covered:
Estimated Activity Length:
50 min

Pages