Source:
University of Colorado Boulder
Published:
2020
Last Updated:
2020
Intended Grade Level:
3-5,
MS,
HS
Description:

A series of over 150 digitial interacitves that allow students to explore a wide variety of science concepts, from simple energy transformations and motion, as well as beahvior of electricity in multiple contexts (static electricity, circuity, batteries, electromagnetism, fields, and more). Many include data collection and applied exploraion of science concepts in physics, chemistry, math, and more. Most are meant for secondary grades, but there are some good foundational energy interactives for upper elementary.

Location:
Source:
The Wonder of Science
Published:
2020
Last Updated:
2020
Intended Grade Level:
PreK-2,
3-5,
MS,
HS,
OST
Description:

The Wonder of Science was created to support the next generation of science teachers. The website aggregates resources developed by Paul Andersen and other science teachers implementing the Next Generation Science Standards* (NGSS). Resources include phenomena resources by standard, graphic organizers, inquiry cards, NGSS posters, and other tools for building three-dimensionality in the classroom.

Location:

Cost Effective Solar Cells Unit Plan

Grades:
9-12
Description:

Through a series of solar panel and solar cell construction activities, students will learn the basic principles of energy conversion from light energy to chemical & electrical energy. Students will assemble and test pre-constructed solar panels to...

+
-
More Details Less Details
Learning Goal(s):
Students will discuss social, cultural, and economic implications of sustainable solar energy.Students will construct and test solar panel arrays to power LED lights, fan motors, and music playersStudents will review circuitry basics and solar cell layersStudents will analyze and share out power generation results with classmatesStudents will construct and test an oxidized copper sheet solar cellStudents will share and analyze oxidized copper sheet solar cell dataStudents will construct and test titanium dioxide coated “raspberry juice” solar cellsStudents will collect and analyze titanium dioxide coated “raspberry juice” solar cell data.Students will discuss results and draw conclusions about variables that may affect power generationStudents will visit a solar cell or silicon manufacturing facility and/or engage with guest speakers. Students will learn more detailed solar cell principles and manufacturing techniques involved in solar cell constructionStudents will research chemicals, materials and procedures for their own solar cell designsStudents will build and present models of their proposed solar cellsStudents will construct and test unique solar cellsStudents will present construction progress and project obstaclesStudents will format solar cell data, draw conclusions, and construct an engineering report as a research poster
Author:
Tom Wolverton
Estimated Activity Length:
10 hours
Solar Mobile

Solar Mobile Design Challenge Unit Plan

Grades:
6-8
Description:

This unit involves students learning about transferring solar energy to small motors, exploring the center of gravity and testing light sources (including the sun). The culminating engineering design project gives students the chance to pull...

+
-
More Details Less Details
Learning Goal(s):
Students will design circuits using various solar panels in order to power motors with propellers. Students will learn about solar energy transfer in order to power the motors on their solar aircraft.Students will research an aircraft and draw an outline of the aircraft onto foam board. Students will explore the concept of center of gravity. Students will test the efficiency of various light sources (incandescent, fluorescent, LED, halogen) for usage by a PV cell.Students will use their prior testing results and knowledge to engineer a solar-powered mobile. Students will work to transfer the most energy from the solar panels considering all the tested variables in order to power the fastest, most efficient mobile.Students will demonstrate and explain why their solar mobile should be chosen for the solar mobile display in the children’s museum. 
Author:
Kristy Schneider
Estimated Activity Length:
0 sec
Design a 50 Year Energy Plan

50 Year Energy Plan - Unit Plan

Grades:
9-12
Description:

Throughout this creative, hands-on Unit, students are challenged to scale up every Disciplinary Core Idea and Science & Engineering Practice they’ve learned - from simple electricity generation, to building their own stereo speakers and DIY electric...

+
-
More Details Less Details
Learning Goal(s):
Explore causes and effects of climate change as related to energy production. Develop a working understanding of varying stakeholder perspectives on the causes and effects of climate change. Through hands-on exploration, build a working speaker that can connect to a cellphone. Use DIY speakers as a model to observe the process of producing electrical currents with a simple generator. Design, build and refine a wind turbine to efficiently convert mechanical energy into electrical energy. Design, build and refine a system that is the most effective at converting the sunlight into electrical energy. Students develop models to study the relationship between the Earth’s atmospheric composition and the Earth’s surface temperatures using simple diagrams. Students reflect on the impact of energy sources and power production on the environment. Students utilize their knowledge of how energy generation processes impacts the environment to inform how and why they develop a 50-year Energy Plan for their local community. 
Author:
Bradford Hill
Estimated Activity Length:
0 sec
Electric Current Induction

Wave Attenuator Unit Overview

Grades:
6-12
Description:

Through a series of learning experiences, students will experiment with the basic concepts of motion to electrical energy transformation. Students start by building a series of models that demonstrate the interactions between magnetic and electric fields....

+
-
More Details Less Details
Learning Goal(s):
1. Students will demonstrate energy transfer through space using electromagnetic phenomena. 2. Students will design a model that demonstrates that a current-carrying wire can induce magnetism. 3. Students will define and build an electromagnet. 4. Students will demonstrate electromagnetic induction. 5. Students will describe and model the energy transfer and transformation in a wave attenuator. 6. Students will build a wave attenuator using a diagram and selected materials. 7. Students will test the model wave attenuator they built. 8. Students will investigate variables that may affect the output of an energy conversion device (wave attenuator). 9. Students will interpret data to identify which variables increase electrical output for these model wave attenuators. 10. Students will communicate results from scientific inquiry to identify factors that are important to optimizing the design of a wave attenuator.
Author:
Tabatha Roderick
Estimated Activity Length:
10 hours
Source:
CK-12
Published:
2021
Last Updated:
2021
Intended Grade Level:
PreK-2,
3-5,
MS,
HS
Description:

cK-12 is a nonprofit free database of curricular resources across all subjects, and includes complete content, interacties and simulations, assessments and videos and more. The energy content includes content that addresses the foundational content required in NGSS. 

Location:
Source:
US Department of Energy
Published:
2017
Last Updated:
2021
Intended Grade Level:
PreK-2,
3-5,
MS,
HS,
OST,
Post Secondary
Description:

Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education is an interdisciplinary approach to teaching and learning about energy. The framework identifies seven Essential Principles and a set of Fundamental Concepts to support each principle. The guide does not seek to identify all areas of energy understanding, but rather to focus on those that are essential for all citizens K-Gray. It presents energy concepts that, if understood and applied, will help individuals and communities make informed energy decisions.

Location:

Pages