Electric Current Induction

Introduction to Electromagnetism

Grades:
6-12
Lesson Number:
1
Description:

Through a series of goal-oriented activities and research, students will build physical models that demonstrate the interactions between magnetism and magnetic fields as well as interactions between magnetism and electric fields. Students will be...

+
-
More Details Less Details
Learning Goal(s):
1. Students will demonstrate energy transfer through space using electromagnetic phenomena. 2. Students will design a model that demonstrates that a current-carrying wire can induce magnetism. 3. Students will define and build an electromagnet. 4. Students will demonstrate electromagnetic induction.
Author:
Tabatha Roderick
Estimated Activity Length:
3 hours

Cost Effective Solar Cells: Solar Energy Equity and Sustainability

Grades:
9-12
Lesson Number:
1
Description:

This lesson is designed to span 2 days with 40-minute sections. On the introduction day, three solar power articles will be read to set up a Socratic Seminar dialogue on Day 2. A teacher will need to read the articles. The articles investigate the pros and...

+
-
More Details Less Details
Learning Goal(s):
Students will read at least three articles discussing solar power generation, and the social, cultural, and economic implications of sustainable solar energyStudents will discuss social, cultural, and economic implications of sustainable solar energy in a Socratic Seminar format.
Author:
Tom Wolverton
Estimated Activity Length:
2 hours

How might we design a battery that reduces e-waste? Phenomenon and Exploration

Grades:
4-5
Lesson Number:
1
Description:

During this introduction lesson series students will explore the guiding phenomenon to understand e-waste and connect it to battery design. Students will utilize online resources to learn about problems from e-waste around the world and the environmental...

+
-
More Details Less Details
Learning Goal(s):
1.Students will learn about the phenomenon of e-waste through online resources to explore the history of electronics.2.Students will ask questions and define problems involving the environmental impact of electronics and human impact.3.Students will evaluate and obtain information about electronic waste from online resources such as news articles and videos.4.Students will learn (or review) knowledge of circuits to design a model and explain how a circuit works.
Author:
Jonathan Strunin
Estimated Activity Length:
2 hours

Cost Effective Solar Cells: Researching Chemicals and Materials for Solar Cell Construction

Grades:
9-12
Lesson Number:
10
Description:

This lesson is designed to be completed in three 80-minute sections. The teacher will facilitate student research on solar cell designs centering around the engineering problem: How can we make a cheaper, cleaner or more efficient solar cell? Teachers...

+
-
More Details Less Details
Learning Goal(s):
Students will research chemicals, materials and procedures for their own solar cell designsStudents will write an introduction to the problem, including criteria, constraints, and solar cell conceptsStudents will research and write a rough materials and procedure for the solar cellStudents will research and describe their solar cell designs.
Author:
Tom Wolverton
Estimated Activity Length:
4 hours

Cost Effective Solar Cells: Unique Solar Cell Model Sketch and Presentation

Grades:
9-12
Lesson Number:
11
Description:

This lesson is designed to be completed in two 80-minute sections. The teacher will facilitate brief class presentations on the unique solar cell models. Teachers will model and encourage students to provide warm and cool feedback to the presenters,...

+
-
More Details Less Details
Learning Goal(s):
Students will sketch 2D or 3D models of their proposed solar cellsStudents will present their unique solar cell design ideas and sketches of their solar cells
Author:
Tom Wolverton
Estimated Activity Length:
3 hours

Cost Effective Solar Cells: Unique Solar Cell Construction & Testing

Grades:
9-12
Lesson Number:
12
Description:

This lesson is designed to be completed in four 80-minute sections. The teacher will facilitate the construction of unique solar cells for student projects. General chemistry equipment and fabrication equipment will be needed for student construction and...

+
-
More Details Less Details

Cost Effective Solar Cells: Construction Progress and Obstacles

Grades:
9-12
Lesson Number:
13
Description:

This lesson is designed to be completed in one 80-minute section. The teacher will facilitate 3-4 groups as they share their construction progress and obstacles. Students will share individual results in a fishbowl setting and will participate in...

+
-
More Details Less Details

Cost Effective Solar Cells: Unique Solar Cell Engineering Report

Grades:
9-12
Lesson Number:
14
Description:

This lesson is designed to be completed in three 80-minute sections. The teacher will have students write their engineering reports with the following sections: Introduction (taken from Lesson #10), Design (incorporating the model from Lesson #10),...

+
-
More Details Less Details
Learning Goal(s):
Students will format solar cell data into tables and graphsStudents will draw conclusions based on testing dataStudents will construct an engineering report in a research poster format
Author:
Tom Wolverton
Estimated Activity Length:
4 hours
Energy Transformations

Probes of Prior Knowledge

Grades:
2-5
Lesson Number:
2
Description:

Teacher will administer worksheet probes (formative assessments) of students’ prior knowledge about “making electricity” and “things that run on electricity.”

+
-
More Details Less Details
Learning Goal(s):
Students will be able to identify the different ways that electrical energy (electricity) is transformed (generated) and identify different everyday items that use electricity.
NGSS Science and Engineering Practices:
Author:
Mike Hellis
Estimated Activity Length:
1 hour
Car Charger Schematic

Activities and Assessment of Vocab and Units

Grades:
7-12
Unit:
Lesson Number:
2
Description:

This lesson is intended as a way to check for student understanding regarding the content presented in the previous lesson of this unit. The assessment takes place in two parts: a written assessment of content-related vocabulary and concepts as well as a...

+
-
More Details Less Details
Learning Goal(s):
Students will be able to define voltage, current, power and energy as it relates to electricity.Students will be able to define electricity and have the units for all the above terms in their Journals.Students will be able to set up multimeters for voltage and current and will be assessed on this.
Author:
Brett McFarland
Relevant NGSS PE:
Estimated Activity Length:
2 hours