Unit Plan: Understand E-Waste Through Battery Design

Grades:
4-5
Description:

In this lesson students will further explore their understanding of energy, electricity, and basic circuits. Students will begin their exploration of batteries by questioning where batteries end up when we are done using them, making connections to e-waste...

+
-
More Details Less Details
Learning Goal(s):
1.Students will make connections to real world problem solving with e-waste.2.Students will explore battery design and transfer of energy through hands on experiments with household items.3.Students will evaluate and analyze problems with e-waste and research solutions.4.Students will draw and label models to explain circuits demonstrating the movement of energy.5.Students will be able to explain how the measured and compared batteries based on the knowledge learned about volts and using a voltmeter.
Author:
Jonathan Strunin
Estimated Activity Length:
10 hours
Electric Current Induction

Wave Attenuator Unit Overview

Grades:
6-12
Description:

Through a series of learning experiences, students will experiment with the basic concepts of motion to electrical energy transformation. Students start by building a series of models that demonstrate the interactions between magnetic and electric fields....

+
-
More Details Less Details
Learning Goal(s):
1. Students will demonstrate energy transfer through space using electromagnetic phenomena. 2. Students will design a model that demonstrates that a current-carrying wire can induce magnetism. 3. Students will define and build an electromagnet. 4. Students will demonstrate electromagnetic induction. 5. Students will describe and model the energy transfer and transformation in a wave attenuator. 6. Students will build a wave attenuator using a diagram and selected materials. 7. Students will test the model wave attenuator they built. 8. Students will investigate variables that may affect the output of an energy conversion device (wave attenuator). 9. Students will interpret data to identify which variables increase electrical output for these model wave attenuators. 10. Students will communicate results from scientific inquiry to identify factors that are important to optimizing the design of a wave attenuator.
Author:
Tabatha Roderick
Estimated Activity Length:
10 hours
Solar Tracker

Simple Solar Tracker

Grades:
4-12
Description:

Students will be shown a working example of a solar tracker and asked to replicate the design based on their observations. The design incorporates four solar cells arranged in two arrays with each array reverse biased such that they generate a voltage that...

+
-
More Details Less Details
Learning Goal(s):
Students observe and replicate a simple solar tracker. Students will learn basic electric circuits and terminology. Students will reflect on possible improvements for solar tracker. Students will reflect on how the engineering design process is used daily.
Author:
Pat Blount
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
2 hours

Adrift in a Sea of Plastic Unit Plan

Grades:
5-8
Description:

In this unit students will investigate the phenomena of plastic trash islands floating in the Pacific and Atlantic Oceans. The students will work to solve the problem of plastic trash islands through the engineering and design process. Using 3D printers,...

+
-
More Details Less Details
Learning Goal(s):
·       Students will design 3D models using Tinkercad software.·       Students will define the problem of plastic trash islands.·       Students will describe possible solutions to the problem of plastic trash islands.·       Students will research the plastic trash problem and create google slideshows the problem and how we might fix it.·       Students will investigate different ways to build structures that both float and hold weight.·       Students will build a model of a device that could collect plastic from the ocean.·       Students will test the models they build.·       Students will communicate their results from scientific inquiry to identify factors that are important to optimizing the design of the plastic collecting device.
Author:
Jonathan Strunin
Estimated Activity Length:
10 hours
Car Charger Schematic

Electrical Energy and Solar Module Efficiency

Grades:
7-12
Unit:
Lesson Number:
1
Description:

This lesson will let students do research to define terms that will be used in this unit. They will record this information in their Journals, which can be scientific or simple homemade notebooks. This lesson will also introduce the multimeter, small solar...

+
-
More Details Less Details
Learning Goal(s):
1. Students will document necessary terms in their journals 2. Students will be able to set up a multimeter to measure voltage 3. Students will be able to set up a multimeter to measure current 4. Students will be able to calculate power from data collected 5. Students should be able to measure the collector area of a solar module (area of solar cell(s) within solar module) and represent this value in square meters (m^2)
Author:
Brett McFarland
Estimated Activity Length:
4 hours
Solar Circuit

How the Amount of Light Affects a Solar Cell

Grades:
6-8
Unit:
Lesson Number:
1
Description:

Students will cover portions of a solar cell and measure the output with a multimeter. They will compare and contrast the outputs of different percentages shaded and different configurations using the same percentage shaded.

+
-
More Details Less Details
Solar Rooftop

Introduction to the Photovoltaic Effect

Grades:
9-12
Lesson Number:
1
Description:

This lesson begins with basic chemistry with regards to atomic structure. The lesson then moves to understanding the special properties of silicon as a photoelectric semi- conductor. Building on this, the basic structure of photovoltaic solar cells is...

+
-
More Details Less Details
Learning Goal(s):
Students will be able to describe the basic structure of a photovoltaic solar cell. Students will be able to outline or summarize how solar cells produce electricity. Students will be able to explain why silicon, boron and phosphorous are most often used to construct solar cells.
Pedagogy & Practice:
NGSS Science and Engineering Practices:
Author:
Clayton Hudiburg
Other Subjects Covered:
Estimated Activity Length:
1 hour
Energy Transformations

What is Energy?

Grades:
4-6
Unit:
Lesson Number:
1
Description:

Students will gain an understanding of the fundamentals of energy through observing a variety of energy transformations and develop a foundational vocabulary for identifying and discussing energy concepts. Students will make observations about how energy...

+
-
More Details Less Details
Learning Goal(s):
Students will obtain the foundational knowledge of energy sources and forms of energy. In addition, students will learn that energy can transfer from one form to another. Students will build the understanding that there are different types of energy and many can not be directly observed.
NGSS Science and Engineering Practices:
Author:
Carol Patrick
Relevant NGSS PE:
Estimated Activity Length:
1 hour
Sources of Energy

Informative Writing: Where Does Energy Come From?

Grades:
3-8
Lesson Number:
1
Description:

This lesson is a (stand alone or in-unit) guided non-fiction research and writing project, which includes a differentiated choice menu and list of ideas for publishing the completed project. Each student will choose one of ten energy sources to research,...

+
-
More Details Less Details
Learning Goal(s):
Students will understand ten renewable and non-renewable energy sources on the earth.Students will learn the locations of different energy sources on the earth.Students will learn the history of energy sources and how they have been used by humans.Students will learn about innovations and inventions used to find, recover, store and release energy for human consumption.
Pedagogy & Practice:
Author:
Lisa Morgan
Estimated Activity Length:
10 hours
Basic Stamp Microprocessor

Measuring Voltage Using a Microcontroller

Grades:
9-12
Lesson Number:
1
Description:

In this lesson students will be introduced to series circuits, resistors, a photoresistor and a microcontroller. There’s a lot here, but it boils down to making a voltage divider circuit and measuring the voltage at different points. A second circuit...

+
-
More Details Less Details
Learning Goal(s):
Students will apply Ohm’s Law. Students will use a multimeter to measure current, voltage, and resistance. Students will use a breadboard to set up a series circuit. Students will read circuit diagrams. Students will calculate times for an RC circuit to change state. Students will prove that resistors in series have an equivalent resistance equal to their individual sums. Students will program the Basic Stamp to measure voltage levels in a voltage divider and RC circuit.
Author:
Pat Blount
Estimated Activity Length:
2 hours