Source:
National Renewable Energy Laboratory NREL
Published:
2020
Last Updated:
2020
Intended Grade Level:
HS
Description:

This online resource is a quick and easy-to-use energy production calculator for grid-tied solar PV systems installed throughout the world that uses NREL scientific data. This website is used by solar photovoltaic energy installation and engineering professionals on a daily basis!

Location:

Unit Plan: A Community Powered by Renewable Energy

Grades:
6-12
Description:

In this three-part comprehensive place-based and project-based unit, students will learn and apply rebnewable energy content to devise action plans at an individual, family, and local level. Students will use primary and secondary research explore energy...

+
-
More Details Less Details
Learning Goal(s):
LEARNING GOALS – PART 11.Students will define and explain the differences between renewable and non-renewable energy sources.2.Students will research, summarize, and present the (short- and long-term) benefits and drawbacks of utilizing wind and solar energy. 3.Students will research, summarize, and present the (short- and long-term) benefits and drawbacks of utilizing fossil fuels.4.Students will generate questions about the greenhouse gas effect, identify and isolate variables, and then conduct an experiment to answer a class generated question about the greenhouse gas effect.5.Through Socratic seminar, students will use the knowledge gained over the course of this lesson to discuss the potential long- and short-term benefits and drawbacks of using fossil fuels, solar energy, and wind energy.6.Students will define scientific vocabulary related to electricity.7.Students will be able to describe how electricity moves through a conductor.8.Students will draw and describe series and parallel circuits.9.Students will identify ways that energy is consumed within their homes.10.Students will perform an energy audit of their home and calculate the amount of energy used by each electronic device and appliances.11.Students will create a spreadsheet demonstrating the electricity required to operate each electronic device and appliance, along with a summary of finding that clearly identifies how energy consumption can be reduced within their home.12.Students will explore various ways to reduce energy (goal is 30% reduction).13.Students will propose a variety of energy reduction plans and present those options to their families for discussion.14.After discussion with their families, students will itemize the agreed upon plan and identify specific actions that result in quantifiable outcomes that will implemented to reduce energy consumption by their families.LEARNING GOALS – PART 21.Students will gain background information regarding the limitations of having and wind and solar generating infrastructure within city and county limits, including environmental, aesthetic, and cultural considerations. 2.Students will work with professionals to compile criteria for placement of wind and solar energy sources.3.Students will conduct experiments to collect and analyze data to provide a conclusion to the questions: What is the optimal blade angle for generating the most energy? What is the optimal wind speed for generating the most energy?4.Students will use prevailing wind data in your region to examine energy output of various sized small wind turbines as wind speeds incrementally increase.5.Based on local wind speeds, students will determine a range of potential kilowatt generation from wind power.6.Students will conduct experiments to determine how electrical output of solar panels change as the tilt, azimuth, and shade coverage change.7.Students will generate, compare, and evaluate various solar configurations for a solar project in your region.LEARNING GOALS – PART 31.Students will utilize previously acquired information about energy needs to create a renewable energy proposal for your town or city.2.Students will perform a solar audit on their homes and use class averages to project the amount of solar energy that can be generated on residential properties.3.Students will assess where commercial and municipal solar projects can occur within your town or city to meet the energy needs for non-residential consumers.4.Students will determine potential locations for larger-scale wind and solar farms to augment the remaining energy needs of the community.5.Students will prepare a comprehensive renewable energy plan that totals the calculations for potential residential, commercial, and agency renewable energy generation.6.Students will calculate the average amount of energy generated by wind turbines and solar panels in various conditions to determine the quantity of renewable energy sources required to power the city.7.Students will use their projected energy calculations to propose a combination of wind and solar sources to meet your locality’s energy needs, based on benefits and drawbacks of each source of energy.8.Based on prevailing winds and building orientation, students will explore potential sites for wind turbines and solar panels.9.Students will develop a final proposal to meet future energy needs through a combination of energy generation and reduction of energy consumption, prepare a brief slide presentation that summarizes their comprehensive plans, and present their finding to local energy conservation groups and local government staff or elected officials.
Author:
Jonathan Strunin
Estimated Activity Length:
10 hours

Unit Plan: Understand E-Waste Through Battery Design

Grades:
4-5
Description:

In this lesson students will further explore their understanding of energy, electricity, and basic circuits. Students will begin their exploration of batteries by questioning where batteries end up when we are done using them, making connections to e-waste...

+
-
More Details Less Details
Learning Goal(s):
1.Students will make connections to real world problem solving with e-waste.2.Students will explore battery design and transfer of energy through hands on experiments with household items.3.Students will evaluate and analyze problems with e-waste and research solutions.4.Students will draw and label models to explain circuits demonstrating the movement of energy.5.Students will be able to explain how the measured and compared batteries based on the knowledge learned about volts and using a voltmeter.
Author:
Jonathan Strunin
Estimated Activity Length:
10 hours

Adrift in a Sea of Plastic Unit Plan

Grades:
5-8
Description:

In this unit students will investigate the phenomena of plastic trash islands floating in the Pacific and Atlantic Oceans. The students will work to solve the problem of plastic trash islands through the engineering and design process. Using 3D printers,...

+
-
More Details Less Details
Learning Goal(s):
·       Students will design 3D models using Tinkercad software.·       Students will define the problem of plastic trash islands.·       Students will describe possible solutions to the problem of plastic trash islands.·       Students will research the plastic trash problem and create google slideshows the problem and how we might fix it.·       Students will investigate different ways to build structures that both float and hold weight.·       Students will build a model of a device that could collect plastic from the ocean.·       Students will test the models they build.·       Students will communicate their results from scientific inquiry to identify factors that are important to optimizing the design of the plastic collecting device.
Author:
Jonathan Strunin
Estimated Activity Length:
10 hours

Keeping it Cool With Solar Unit Plan

Grades:
K-2
Description:

Keeping It Cool With Solar unit asks the question: “How might we design a structure that will keep us cool on a hot day?” As an anchoring phenomenon, students will be shown a time-lapse video of an ice cube melting, and a second phenomenon of a solar...

+
-
More Details Less Details
Learning Goal(s):
Students will make observations to determine the effect of sunlight on Earth’s surface. Students will plan and conduct investigations to determine whether structures made with various materials will keep objects cool when placed in a beam of light. Students will analyze data from tests of two objects designed to solve the same problem in order to compare the strengths and weaknesses of how each performs. Students will analyze data obtained from testing different materials to determine which materials have the properties that are best suited for keeping an object cool. Students will test if solar panels and solar energy can help cool down their structure.
Author:
Mark Lewin
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
4 hours
Source:
Institute of Environmental Science and Technology (ICTA) at the Universitat Autonoma de Barcelona
Published:
2021
Last Updated:
2021
Intended Grade Level:
MS,
HS,
Post Secondary
Description:

The EJ Atlas collects these stories of communities struggling for environmental justice from around the world. It aims to make these mobilization more visible, highlight claims and testimonies and to make the case for true corporate and state accountability for the injustices inflicted through their activities. It also attempts to serve as a virtual space for those working on EJ issues to get information, find other groups working on related issues, and increase the visibility of environmental conflicts.

It is an interactive worldwide atlas highlighting EJ issues by geography.

Source:
University of Chicago
Published:
2021
Last Updated:
2021
Intended Grade Level:
3-5,
MS,
HS,
Post Secondary
Description:

A really interesting interactive graphic that allows students to explore different sources and end uses of energy over the history of the United States. It clearly demonstrates how energy sources have shifted over time, as well as increasing energy consumption as the US population expanded.

Location:
Pedagogy & Practice:
Solar Mobile

Solar Mobile Design Challenge Unit Plan

Grades:
6-8
Description:

This unit involves students learning about transferring solar energy to small motors, exploring the center of gravity and testing light sources (including the sun). The culminating engineering design project gives students the chance to pull...

+
-
More Details Less Details
Learning Goal(s):
Students will design circuits using various solar panels in order to power motors with propellers. Students will learn about solar energy transfer in order to power the motors on their solar aircraft.Students will research an aircraft and draw an outline of the aircraft onto foam board. Students will explore the concept of center of gravity. Students will test the efficiency of various light sources (incandescent, fluorescent, LED, halogen) for usage by a PV cell.Students will use their prior testing results and knowledge to engineer a solar-powered mobile. Students will work to transfer the most energy from the solar panels considering all the tested variables in order to power the fastest, most efficient mobile.Students will demonstrate and explain why their solar mobile should be chosen for the solar mobile display in the children’s museum. 
Author:
Kristy Schneider
Estimated Activity Length:
0 sec