Design a 50 Year Energy Plan

50 Year Energy Plan - Unit Plan

Grades:
9-12
Description:

Throughout this creative, hands-on Unit, students are challenged to scale up every Disciplinary Core Idea and Science & Engineering Practice they’ve learned - from simple electricity generation, to building their own stereo speakers and DIY electric...

+
-
More Details Less Details
Learning Goal(s):
Explore causes and effects of climate change as related to energy production. Develop a working understanding of varying stakeholder perspectives on the causes and effects of climate change. Through hands-on exploration, build a working speaker that can connect to a cellphone. Use DIY speakers as a model to observe the process of producing electrical currents with a simple generator. Design, build and refine a wind turbine to efficiently convert mechanical energy into electrical energy. Design, build and refine a system that is the most effective at converting the sunlight into electrical energy. Students develop models to study the relationship between the Earth’s atmospheric composition and the Earth’s surface temperatures using simple diagrams. Students reflect on the impact of energy sources and power production on the environment. Students utilize their knowledge of how energy generation processes impacts the environment to inform how and why they develop a 50-year Energy Plan for their local community. 
Author:
Bradford Hill
Estimated Activity Length:
0 sec
Lead Acid Battery

Solar Battery Charging

Grades:
7-12
Description:

Students will become familiar with circuits, cells, batteries, and photovoltaic cells, then plan, build, test, modify, and re-test a small solar battery charger designed to maintain batteries from a particular device.

+
-
More Details Less Details
Learning Goal(s):
Students will build series, parallel, and parallel series circuits from a schematic diagram. Students will master the basic concept of battery charging. Students will be able to plan and build solar battery chargers for a given battery system. Intermediate students will calculate time to charge a depleted battery to its full capacity given specifications of a solar module. Students will be able to explain how a solar cell works with diagrams and words. Students will use a digital multi-meter to measure voltage, current, resistance, and diode polarity.
Author:
Luke Robbins
Estimated Activity Length:
9 hours
Simple Solar Water Heater

Making the Standard Solar Heater

Grades:
6-8
Lesson Number:
1
Description:

In part one of the activity students will be asked to create a simple solar heater, measure the temperature change in a vial of water, then calculate the heat energy transferred to a vial of water. Students will construct the solar heater, place a set...

+
-
More Details Less Details
Learning Goal(s):
In this activity students will learn that sunlight energy can be transformed into other forms of energy and that the amount of sunlight energy captured by an object can be quantified and measured.
Author:
Nathan Franck
Estimated Activity Length:
1 hour
Solar Thermal Jug

Passive Solar Water Heating

Grades:
6-12
Lesson Number:
1
Description:

Students retrofit milk jugs to absorb and retain the most solar energy. This process involves students collecting data that measures the impacts of different variables on the solar energy absorbed by each collection device. Students should be able to see...

+
-
More Details Less Details
Learning Goal(s):
1. Students will cover/manipulate milk jugs to achieve the most solar energy absorption. 2. Students will calculate the joules of energy absorbed by the solar heated water. 3. Students will measure and graph the temperature changes of their solar milk jugs. 4. Students will gain an understanding of the amount of energy in sunlight.
Author:
Tami Church
Estimated Activity Length:
2 hours

Manipulating Design Variables on Solar Heaters

Grades:
6-8
Lesson Number:
2
Description:

Part 2 builds on part 1, asking students to design a solar heater that more effectively collects solar energy. Students are provided with various building supplies and are asked to change one variable from the standard to construct a new, more effective...

+
-
More Details Less Details
Compost Heater

Compost Bioreactor Design

Grades:
7-12
Lesson Number:
2
Description:

Solar energy is available when the sun shines but energy can be supplemented at night by the release of energy during the composting of organic waste. In this activity, we will experiment with the feasibility of harnessing thermal energy to heat water with...

+
-
More Details Less Details
Learning Goal(s):
1. Students will research the science of composting and proper maintenance methods to build their own bioreactor. 2. Students will research the proper composition of compost for maximum heat production. 3. Students will transfer the thermal energy in compost to a container of water heat water with by placing a vessel in the middle of the active compost/bioreactor.
Author:
Tami Church
Estimated Activity Length:
2 hours
Wort Chiller

Bioreactor Water Circulation System

Grades:
7-12
Lesson Number:
3
Description:

Solar energy is available when the sun shines but energy can be supplemented at night by the decomposition energy in a bioreactor. In this activity we will experiment with the feasibility of using heated water in a bioreactor to circulate it through a...

+
-
More Details Less Details
Learning Goal(s):
1. Students will examine the properties of solar water pumping systems using KidWind solar water pumps or similar water pumps. 2. Students will experiment with the properties of water and its limitations in circulating due to pump power and distance. 3. Students will evaluate the use of a heat sink/chiller in the circulation of water through the bioreactor.
Author:
Tami Church
Estimated Activity Length:
4 hours

Creating the Most Effective Solar Heater

Grades:
6-8
Lesson Number:
3
Description:

This part can be staged as a competition or simply a personal challenge to beat the standard solar heater created in part 1. During this stage of the lesson students are asked to analyze data and results from part 2 and identify which characteristics of a...

+
-
More Details Less Details